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Abstract—The steady-state performance of a bulk transfer
TCP flow (i.e., a flow with a large amount of data to send, such
as FTP transfers) may be characterized by thesend rate,which is
the amount of data sent by the sender in unit time. In this paper
we develop a simple analytic characterization of the steady-state
send rate as a function of loss rate and round trip time (RTT) for
a bulk transfer TCP flow. Unlike the models in [7]–[9], and [12],
our model captures not only the behavior of the fast retransmit
mechanism but also the effect of the time-out mechanism. Our
measurements suggest that this latter behavior is important from
a modeling perspective, as almost all of our TCP traces contained
more time-out events than fast retransmit events. Our measure-
ments demonstrate that our model is able to more accurately
predict TCP send rate and is accurate over a wider range of loss
rates. We also present a simple extension of our model to compute
the throughput of a bulk transfer TCP flow, which is defined as
the amount of data received by the receiver in unit time.

Index Terms—Empirical validation, modeling, retransmission
timeouts, TCP.

I. INTRODUCTION

A SIGNIFICANT amount of today’s Internet traffic,
including WWW (HTTP), file transfer (FTP), e-mail

(SMTP), and remote access (Telnet) traffic, is carried by the
TCP transport protocol [20]. TCP together with UDP form
the very core of today’s Internet transport layer. Traditionally,
simulation and implementation/measurement have been the
tools of choice for examining the performance of various
aspects of TCP. Recently, however, several efforts [7]–[9], [12],
have been directed at analytically characterizing the send rate
of a bulk transfer TCP flow as a function of packet loss and
round trip delay. One reason for this recent interest is that a
simple quantitative characterization of TCP send rate under
given operating conditions offers the possibility of defining a
“fair share” or “TCP-friendly” [8] send rate for a non-TCP flow
that interacts with a TCP connection. Indeed, this notion has
already been adopted in the design and development of several
multicast congestion control protocols [21], [22].

In this paper we develop a simple analytic characterization
of the steady-state send rate of a bulk transfer TCP flow (i.e.,
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a flow with a large amount of data to send, such as FTP trans-
fers) as a function of loss rate and round trip time (RTT). Unlike
the recent work of [7]–[9], and [12], our model captures not only
the behavior of the fast retransmit mechanism but also the effect
of the time-out mechanism on send rate. The measurements we
present in Section III indicate that this latter behavior is impor-
tant from a modeling perspective, as we observe more time-out
events than fast retransmit events in almost all of our TCP traces.
Another important difference between ours and previous work
is the ability of our model to accurately predict send rate over
a significantly wider range of loss rates than before; measure-
ments presented in [9] as well the measurements presented in
this paper indicate that this too is important. We also explicitly
model the effects of small receiver-side windows. By comparing
our model’s predictions with a number of TCP measurements
made between various Internet hosts, we demonstrate that our
model is able to more accurately predict TCP send rate and is
able to do so over a wider range of loss rates.

The remainder of the paper is organized as follows. In Sec-
tion II we describe our model of TCP congestion control in de-
tail and derive a new analytic characterization of TCP send rate
as a function of loss rate and average RTT. In Section III we
compare the predictions of our model with a set of measured
TCP flows over the Internet, having as their endpoints sites in
both U.S. and Europe. Section IV discusses the assumptions un-
derlying the model and a number of related issues in more detail.
In Section V we present a simple extention of the model to cal-
culate the throughput of a bulk transfer TCP flow. Section VI
concludes the paper.

II. M ODEL FORTCP CONGESTIONCONTROL

In this section we develop a stochastic model of TCP conges-
tion control and avoidance that yields a relatively simple ana-
lytic expression for the send rate of a saturated TCP sender, i.e.,
a flow with an unlimited amount of data to send, as a function
of loss rate and average RTT.

TCP is a protocol that can exhibit complex behavior, espe-
cially when considered in the context of the current Internet,
where the traffic conditions themselves can be quite compli-
cated and subtle [16]. In this paper, we focus our attention on the
congestion avoidance behavior of TCP and its impact on send
rate, taking into account the dependence of congestion avoid-
ance on ACK behavior, the manner in which packet loss is in-
ferred (e.g., whether by duplicate ACK detection and fast re-
transmit, or by time-out), limited receiver window size, and av-
erage RTT. Our model is based on the Reno flavor of TCP, as it
is one of the more popular implementations in the Internet today

1063–6692/00$10.00 © 2000 IEEE
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[14], [15]. We assume that the reader is familiar with TCP Reno
congestion control (see for example [6], [18], and [19]) and we
adopt most of our terminology from [6], [18], and [19].

Our model focuses on the congestion avoidance mechanism,
where the congestion control window size,, is increased by

each time an ACK is received. Conversely, the window is
decreased whenever a lost packet is detected, with the amount
of the decrease depending on whether packet loss is detected by
duplicate ACK’s or by time-out, as discussed shortly.

Wemodelthe congestion avoidance behavior of TCP in terms
of “rounds.” A round starts with transmission of packets,
where is the current size of the TCP congestion window.
Once all packets falling within the congestion window have
been sent, no other packets are sent until the first ACK is re-
ceived for one of these packets. This ACK reception marks
the end of the current round and the beginning of the next round.
In this model, the duration of a round is equal to the RTT and is
assumed to be independent of the window size, an assumption
also adopted (either implicitly or explicitly) in [7]–[9], and [12].
Our concept of rounds is similar to the concept of “mini-cycles”
proposed in [7]. Note that we have also assumed here that the
time needed to send all the packets in a window is smaller than
the RTT; this behavior can be seen in observations reported in
[3] and [14].

Let be the number of packets that are acknowledged by a
received ACK. Many TCP receiver implementations send one
cumulative ACK for two consecutive packets received (i.e., de-
layed ACK, [19]), so is typically 2. If packets are sent in
the first round and are all received and acknowledged correctly,
then acknowledgments will be received. Since each ac-
knowledgment increases the window size by , the window
size at the beginning of the second round is then .
That is, during congestion avoidance and in the absence of loss,
the window size increases linearly in time, with a slope of
packets per RTT.

In the following subsections, we model the behavior of TCP
in the presence of packet loss. Packet loss can be detected in
one of two ways, either by the reception at the TCP sender of
“triple-duplicate” acknowledgments, i.e., four ACK’s with the
same sequence number, or via time-outs. We denote the former
event as a TD (triple-duplicate) loss indication, and the latter as
a TO loss indication.

We assume that a packet is lost in a round independently of
any packets lost inotherrounds. On the other hand, we assume
that packet losses are correlated among the back-to-back trans-
missions within a round: if a packet is lost, all remaining packets
transmitted until the end of that round are also lost. This bursty
loss model is a simple and crude approximation to capture the
loss behavior observed in studies such as [23]. We discuss this
assumption further in Section IV.

We develop a stochastic model of TCP congestion control in
several steps, corresponding to its operating regimes: when loss
indications are exclusively TD (Section II-A), when loss indica-
tions are both TD and TO (Section II-B), and when the conges-
tion window size is limited by the receiver’s advertised window
(Section II-C). Note that we do not model certain aspects of the
behavior of TCP (e.g., fast recovery). However, we believe that

Fig. 1. Evolution of window size over time when loss indications are
triple-duplicate ACK’s.

we have captured the essential elements of TCP behavior, as
indicated by the generally very good fits between model predic-
tions and measurements made on numerous commercial TCP
implementations, as discussed in Section III. A more detailed
discussion of model assumptions and related issues is presented
in Section IV. Also note that in the following, we measure send
rate in terms of packets per unit of time, instead of bytes per unit
of time.

A. Loss Indications are Exclusively Triple-Duplicate ACK’s

In this section, we assume that loss indications are exclusively
of type triple-duplicate ACK, and that the window size is not
limited by the receiver’s advertised flow control window. We
consider a TCP flow starting at time , where the sender
always has data to send. For any given time , define to
be the number of packets transmitted in the interval , and

to be the send rate in that interval. Note thatis
the number of packets sent per unit of time regardless of their
eventual fate (i.e., whether they are received or not). Thus, we
define the long-term steady-state send rate of a TCP connection
to be

We have assumed that if a packet is lost in a round, all re-
maining packets transmitted until the end of the round are also
lost. Therefore we define to be the probability that a packet
is lost, given that either it is the first packet in its round or the
preceding packet in its round is not lost. We are interested in es-
tablishing a relationship between the send rate of the TCP
connection and, the loss probability defined above.

A sample path of the evolution of congestion window size is
given in Fig. 1. Between two TD loss indications, the sender
is in congestion avoidance, and the window increases by
packets per round, as discussed earlier. Immediately after the
loss indication occurs, the window size is reduced by a factor of
two.

We define a TD period (TDP) to be a period between two
TD loss indications (see Fig. 1). For theth TDP define to
be the number of packets sent in the period,the duration of
the period, and the window size at the end of the period.
Considering to be a Markov regenerative process with
rewards it can be shown that

(1)
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Fig. 2. Packets sent during a TDP.

In order to derive an expression for, the long-term steady-state
TCP send rate, we must next derive expressions for the mean of

and .
Consider a TDP as in Fig. 2. A TDP starts immediately after

a TD loss indication. Thus, the initial congestion window size
is equal to , half the size of the window before the TD
occurred. At each round the window is incremented byand
the number of packets sent per round is incremented by one
every rounds. We denote by the first packet lost in TDP,
and by the round where this loss occurs (see Fig. 2). After
packet , more packets are sent in an additional round
before a TD loss indication occurs (and the current TDP ends),
as discussed in more detail in Section II-B. Thus, a total of

packets are sent in rounds. It follows that

(2)

To derive , consider the random process , where
is the number of packets sent in a TDP up to and including the
first packet that is lost. Based on our assumption that packets are
lost in a round independently of any packets lost inotherrounds,

is a sequence of independent and identically distributed
(i.i.d.) random variables. Given our loss model, the probability
that is equal to the probability that exactly packets
are successfully acknowledged before a loss occurs is

(3)

The mean of is thus

(4)

From (2) and (4) it follows that

(5)

To derive and , consider again TDP. We define
to be the duration (RTT) of theth round of TDP. Then, the

duration of TDP is . We consider the round
trip times to be i.i.d. random variables, that are assumed
to be independent of the size of congestion window, and thus
independent of the round number,. It follows that

(6)

where

Henceforth, we denote by RTT the average value of
RTT.

Finally, to derive an expression for , we consider the
evolution of as a function of the number of rounds, as shown
in Fig. 2. To simplify our exposition, in this derivation we as-
sume that and are integers. First we observe that
during the th TDP, the window size increases between
and . Since the increase is linear with slope , we have

(7)

The fact that packets are transmitted in TDPis expressed by

(8)

(9)

using (7) (10)

where is the number of packets sent in the last round (see
Fig. 2). is a Markov process for which a stationary dis-
tribution can be obtained numerically, based on (7) and (10) and
on the probability density function of given in (3). We can
also compute the probability distribution of . However, a
simpler approximate solution is obtained by assuming that
and are mutually independent sequences of i.i.d. random
variables. With this assumption, it follows from (5), (7), and (10)
that

(11)

and

(12)

For simplicity, we assume , the number of packets in the last
round, to be uniformly distributed between 1 and . Thus

. From (11) and (12), we have

(13)

Observe that

(14)

i.e., for small values of . From (6), (11), and
(13), it follows that

(15)

(16)
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Observe that

(17)

From (1) and (5) we have

(18)

RTT

(19)

which can be expressed as

RTT
(20)

Thus, for small values of, (20) reduces to the formula in [8]
for .

We next extend our model to include TCP behaviors (such
as time-outs and receiver-limited windows) not considered in
previous analytic studies of TCP congestion control.

B. Loss Indications are Triple-Duplicate ACK’s and Time-Outs

So far, we have considered TCP flows where all loss indi-
cations are due to triple-duplicate ACK’s. Our measurements
show (see Table II) that in many cases the majority of window
decreases are due to time-outs, rather than fast retransmits.
Therefore, a good model should capture time-out loss indica-
tions.

In this section, we extend our model to include the case where
the TCP sender times out. This occurs when packets (or ACK’s)
are lost, and less than three duplicate ACK’s are received. The
sender waits for a period of time denoted by, and then re-
transmits nonacknowledged packets. Following a time-out, the
congestion window is reduced to one, and one packet is thus re-
sent in the first round after a time-out. In the case that another
time-out occurs before successfully retransmitting the packets
lost during the first time-out, the period of time-out doubles to

; this doubling is repeated for each unsuccessful retransmis-
sion until a time-out period of is reached, after which the
time-out period remains constant at .

An example of the evolution of congestion window size is
given in Fig. 3. Let denote the duration of a sequence of
time-outs and the time interval between two consecutive
time-out sequences. Define to be

Also, define to be the number of packets sent during.
Then, is an i.i.d. sequence of random variables, and
we have

Fig. 3. Evolution of window size when loss indications are triple-duplicate
ACK’s and time-outs.

We extend our definition of TDP’s given in Section II-A to in-
clude periods starting after, or ending in, a TO loss indication
(in addition to periods between two TD loss indications). Let

be the number of TDP’s in interval . For the th TDP
of interval we define to be the number of packets sent
in the period, to be the duration of the period, to be
the number of rounds in the period, and to be the window
size at the end of the period. Also, denotes the number of
packets sent during time-out sequence . Observe here that

counts the total number of packet transmissions in , and
not just the number of different packets sent. This is because, as
discussed in Section II-A, we are interested in the send rate of
a TCP flow. We have

and, thus

If we assume to be an i.i.d. sequence of random vari-
ables, independent of and , then we have

To derive observe that, during , the time between two
consecutive time-out sequences, there areTDP’s, where each
of the first end in a TD, and the last TDP ends in a TO. It
follows that in there is one TO out of loss indications.
Therefore, if we denote by the probability that a loss indica-
tion ending a TDP is a TO, we have . Consequently

(21)

Since and do not depend on time-outs, their means are
those derived in (4) and (16). To compute the send rate using
(21) we must still determine , , and .
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Fig. 4. Packet and ACK transmissions preceding a loss indication.

We begin by deriving an expression for. Consider the round
of packets where a loss indication occurs; it will be referred to
as the “penultimate” round (see Fig. 4).1 Let be the current
congestion window size. Thus packets are sent in
the penultimate round. Packets are acknowledged,
and packet is the first one to be lost (or not ACKed). We
again assume that packet losses are correlated within a round:
if a packet is lost, so are all the following packets, till the end
of the round. Thus, all packets following in the penul-
timate round are also lost. However, since packets, ,
are ACKed, another packets, are sent in the next
round, which we will refer to as the “last” round. This round
of packets may have another loss, say packet . Again, our
assumptions on packet loss correlation mandates that packets

are also lost in the last round. The packets suc-
cessfully sent in the last round are responded to by ACK’s for
packet , which are counted as duplicate ACK’s. These ACK’s
are not delayed [19], so the number of duplicate ACK’s is equal
to the number of successfully received packets in the last round.
If the number of such ACK’s is higher than three, then a TD indi-
cation occurs, otherwise, a TO occurs. In both cases the current
period between losses, TDP, ends. We denote by the
probability that the first packets are ACKed in a round of
packets, given there is a sequence of one or more losses in the
round. Then

Also, we define to be the probability that packets
are ACKed in sequence in the last round (wherepackets were
sent) and the rest of the packets in the round, if any, are lost.
Then

.

1In Fig. 4 each ACK acknowledges individual packets (i.e., ACK’s are not
delayed). We have chosen this for simplicity of illustration. We will see that the
analysis does not depend on whether ACK’s are delayed or not.

Then, , the probability that a loss in a window of sizeis
a TO, is given by

otherwise

(22)
where is given by

(23)

This follows by noting that a TO occurs if the number of packets
successfully transmitted in the penultimate round,, is less than
three, or otherwise if the number of packets successfully trans-
mitted in the last round, is less than three. Also, due to the as-
sumption that packet is lost independently of packet
(since they occur in different rounds), the probability that there
is a loss at in the penultimate round and a loss at in
the last round equals . After algebraic ma-
nipulations, we get the following for :

(24)

Observe (for example, using L’Hopital’s rule) that

Numerically we find that a very good approximation ofis

(25)

, the probability that a loss indication is a TO, is

We approximate

(26)

where is given by (13).
We consider next the derivation of and . For

this, we need the probability distribution of the number of
time-outs in a TO sequence, given that there is a TO. We have
observed in our TCP traces that in most cases, one packet
is transmitted between two time-outs in sequence. Thus, a
sequence of TO’s occurs when there are consecutive
losses (the first loss is given) followed by a successfully
transmitted packet. Consequently, the number of TO’s in a TO
sequence has a geometric distribution, and thus

Then we can compute the mean of:

(27)

Next, we focus on , the average duration of a time-out
sequence excluding retransmissions, which can be computed in
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a similar way. We know that the first six time-outs in one se-
quence have length , , with all immediately
following time-outs having length . Then, the duration of
a sequence with time-outs is

for

for

and the mean of is

Substituting expressions for, , , and in (21)
we obtain the following for :

RTT
(28)

where

(29)

is given in (24), in (13), and in (16). Using (14),
(17), and (25), we have that (28) can be approximated by

RTT

(30)

C. Impact of Window Limitation

So far, we have not considered any limitation on the conges-
tion window size. At the beginning of TCP flow establishment,
however, the receiver advertises a maximum buffer size which
determines a maximum congestion window size,. As a con-
sequence, during a period without loss indications, the window
size can grow up to , but will not grow further beyond this
value. An example of the evolution of window size is depicted
in Fig. 5.

To simplify the analysis of the model, we make the following
assumption. Let denote the unconstrained window size, the
mean of which is given in (13):

(31)

We assume that if , we have the approximation
. In other words, if , the receiver-

window limitation has negligible effect on the long term average
of the TCP send rate, and thus the send rate is given by (28).

Fig. 5. Evolution of window size when limited byW .

Fig. 6. Fast retransmit with window limitation.

On the other hand, if , we approximate
. In this case, consider an interval between

two time-out sequences consisting of a series of TDP’s as in
Fig. 6. During the first TDP, the window grows linearly up to

for rounds, then remains constant for rounds, and
then a TD indication occurs. The window then drops to ,
and the process repeats. Thus

which implies . Also, considering the number
of packets sent in theth TDP, we have

and then

Since , the number of packets in theth TDP, does not depend
on window limitation, is given by (5),

, and thus

Finally, since , we have

By substituting this result in (28), we obtain the TCP send rate,
, when the window is limited:
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In conclusion, the complete characterization of TCP send rate,
, is

otherwise
(32)

where is given in (29), is given in (24), and in
(13). In the following sections, we will refer to (32) as the “full
model.” The following approximation of follows from
(30) and (32) as shown in

(33)
In Section III, we verify that (33) is indeed a very good approxi-
mation of (32). Henceforth we will refer to (33) as the “approx-
imate model.”

III. M EASUREMENTS ANDTRACE ANALYSIS

Equations (32) and (33) provide an analytic characterization
of TCP send rate as a function of packet loss indication rate,
RTT, and maximum window size. In this section we empiri-
cally validate these formulae, using measurement data from sev-
eral TCP connections established between hosts scattered across
U.S. and Europe.

Table I lists the domains and operating systems of the hosts
used for the measurements.2 All data sets are for unidirectional
bulk data transfers. We gathered the measurement data by run-
ning tcpdump at the sender, and analyzing its output with a set
of analysis programs developed by us. These programs account
for various measurement and implementation related problems
discussed in [14] and [15]. For example, when we analyze traces
from a Linux sender, we account for the fact that TD events
occur after getting only two duplicate ACK’s instead of three.
Our trace analysis programs were further verified by checking
them againsttcptrace [11] andns [10].

We carried out two different sets of measurement experi-
ments. Table II summarizes data from the first set. Each row
in the table corresponds to a 1-h long TCP connection in
which the sender behaves as an “infinite source”—it always
has data to send and thus TCP send rate is only limited by
the TCP congestion control. The experiments were performed
at randomly selected times during 1997 and the beginning of
1998. The third and fourth column of Table II indicate the

2The hostname for machine located in theatt.com domain has been altered
due to security concerns.

TABLE I
DOMAINS AND OPERATING SYSTEMS OFHOSTS

number of packets sent and the number of loss indications,
respectively (triple-duplicate ACK or time-out). Dividing the
total number of loss indications by the total number of packets
sent gives us an approximate value of. This approximation
is similar to the one used in [9]. The next six columns show a
breakdown of the loss indications by type: the number of TD
events, the number of “single” time-outs, having duration,
the number of “double” time-outs, , etc. Note that
depends only on thetotal number of loss indications, and not
on their type. The last two columns report the average value of
RTT, and average duration of a single time-out. These values
have been averaged over the entire trace. When calculating
RTT values, we follow Karn’s algorithm, in an attempt to
minimize the impact of time-outs and retransmissions on the
RTT estimates. An important observation to be drawn from the
data in these tables is that in all traces, time-outs constitute the
majority or a significant fraction of the total number of loss
indications. This underscores the importance of including the
effects of time-outs in the model of TCP congestion control.
In addition to single time-out events (column), it can be
seen that exponential backoff (multiple time-outs) occurs with
significant frequency.

For the second set of experiments, we established 100 seri-
ally-initiated TCP connections between a given sender-receiver
pair. Each connection lasted for 100 s, and was followed by a
50-s gap before the next connection was initiated. These ex-
periments were performed at randomly selected times during
1998. These connections showed loss patterns similar to those
observed for the 1-h long connections.

The graphs in Fig. 7 compare the predictions of the proposed
model, and the predictions of the model proposed in [9] with
measurement data for 1 h-long traces. The title of each graph
indicates the average RTT, the average single time-out duration

, and the maximum window size advertised by the re-
ceiver (in number of packets). To plot the graph, each 1 h trace
was divided into 36 consecutive 100 s intervals, and each plotted
point on a graph represents the number of packets sent versus
the frequency of loss indications during a 100 s interval. While
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TABLE II
SUMMARY DATA FROM 1 h TRACES

dividing a continuous trace into fixed sized intervals can lead
to some inaccuracies in measuring, (e.g., the interval bound-
aries may occur within time-out intervals, thus perhaps not at-
tributing a loss event to the interval where most of its impact is
felt), we believe that by using interval sizes of 100 s, which are
longer than most time-outs, we have minimized the impact of
such inaccuracies. Each 100 s interval is classified into one of
four categories: intervals of type TD did not suffer any time-out
(only triple duplicate ACK’s), intervals of type “ ” suffered
at least one single time-out but no exponential backoff, “”
represents intervals that suffered a single exponential backoff at
least once (i.e., a double time-out), etc. The line labeled “TD
only” (stands for triple-duplicate ACK’s only) plots the predic-
tions made by the model described in [9], which is essentially
the same model as described in [8], while accounting for de-
layed ACK’s. The line labeled “proposed (full)” represents the
model described by (32). It has been pointed out in [8] that the
TD only model may not be accurate when the frequency of loss
indications is higher than 5%. We observe that in many traces
the frequency of loss indications is higher than 5% and that in-
deed the TD only model predicts values for TCP send rate that
are much higher than measured. Also, in several traces [see, for
example, Fig. 7(a)] we observe that TCP send rate is limited by
the receiver’s advertised window size. This is not accounted for
in the TD only model, and thus TD only overestimates the send
rate at low values.

The graphs in Fig. 8 compare the measured send rate with the
predictions of the proposed model and the model in [9]. The title
of each graph indicates the sender-receiver pair between which
the measurements were carried out. As described earlier, each
experiment consisted of 100 traces, each of which was 100 s in
duration. For each trace, we measure the send rate, the loss rate,

the round-trip time and . We plot three points for each trace:
one representing the measured send rate, a second representing
the send rate predicted by the proposed model and the third rep-
resenting the TD-only model in [9]. The points in each category
are joinedonly for better visual representation. The axis in-
dicates the trace number and theaxis indicates the send rate,
measured in terms of number of packets sent by the sender.

In order to evaluate the models, we compute the average error
as follows:

• Hour-long traces: We divide each trace into 100 s inter-
vals, and compute the number of packets sent during that
interval (here denoted as ) as well as the value of
loss frequency (here ). We also calculate the av-
erage value of RTT and time-out for the entire trace (these
values are available in Table II). Then, for each 100 s in-
terval we calculate the number of packets predicted by our
proposed model, s, where

is from (32). The average error is given by:

number of observations

The average error of our approximate model [using
from (33)] and of “TD only” are calculated in a similar
manner. A smaller average error indicates better model
accuracy. In Fig. 9 we plot these error values to allow vi-
sual comparison. On the-axis, the traces are identified by
sender and receiver names. The order in which the traces
appear is such that, from left to right, the average error
for the “TD only” model is increasing. The points corre-
sponding to a given model are joined by line segmentsonly
for better visual representation of the data.
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(a) (b)

(c) (d)

(e) (f)

Fig. 7. One-hour traces. (a) Manic to baskerville, RTT= 0:243, T = 2:495, W = 6, 1� 1 h. (b) Pif to imagine, RTT= 0:229, T = 0:700,W = 8,
1� 1 h. (c) Pif to manic, RTT= 0:257,T = 1:454,W = 33, 1� 1 h. (d) Void to alps, RTT= 0:162,T = 0:489,W = 48, 1� 1 h. (e) Void to tove,
RTT = 0:272, T = 1:356,W = 8, 1� 1 h. (f) Babel to alps, RTT= 0:194, T = 1:359,W = 48, 1� 1 h.

• 100 s traces: We use the value of round-trip time and
time-out calculated for each 100 s trace. The error values
are shown in Fig. 10.

It can be seen from Figs. 9 and 10 that in most cases, our pro-
posed model is a better estimator of the observed values than the
“TD only” model. Our approximate model also generally pro-
vides more accurate predictions than the “TD only” model, and
is quite close to the predictions made by the full model. Inde-
pendent empirical and simulation studies of the model proposed
in this paper have also been presented in [1], [2], [5], and [17].

These studies have found that the model provides a good fit to
the observed send rate of TCP connections under a wide variety
of network conditions.

IV. DISCUSSION OF THEMODEL AND THE

EXPERIMENTAL RESULTS

In this section, we discuss various simplifying assumptions
made while constructing the model in Section II, and their im-
pact on the results described in Section III.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. The 100-s traces. (a) Manic to ganef. (b) Manic to mafalda. (c) Manic to tove. (d) Manic to maria. (e) Att to sutton. (f) Manic to afer.

Our model does not capture the subtleties of thefast recovery
algorithm. We believe that the impact of this omission is quite
small, and that the results presented in Section III validate this
assumption indirectly. We have also assumed that the time spent
in slow startis negligible compared to the length of our traces.
These assumptions have also been made in [8], [9], and [12].

We have assumed that packet losses within a round arecorre-
latedand losses in one round areindependentof losses in other
rounds. Recent studies [23] have shown the packet loss process
observed on the Internet is bursty. The models provided, how-
ever, are too complicated to allow derivation of closed-formed
results. Thus a simple loss model was assumed. In our simula-
tion studies the model was able to predict the throughput of TCP
connections quite well, even with Bernoulli losses. Investigation

of performance of TCP under various packet loss models is an
area for future work.

Another assumption we made, that is also implicit in [8],
[9], and [12], is that the round-trip time is independent of the
window size. We have measured the coefficient of correlation
between the duration of round samples and the number of
packets in transit during each sample. For most traces summa-
rized in Table II, the coefficient of correlation is in the range
[ 0.1, 0.1], thus lending credence to the statistical indepen-
dence between round-trip time and window size. However,
when we conducted similar experiments with receivers at the
end of a modem line, we found the coefficient of correlation
to be as high as 0.97. We speculate that this is a combined
effect of a slow link and a buffer devoted exclusively to this
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Fig. 9. Comparison of the models for 1 h traces.

Fig. 10. Comparison of the models for 100 s traces.

connection (probably at the ISP, just before the modem). As a
result, our model, as well as the models described in [8], [9],
and [12] fail to match the observed data in the case of a receiver
at the end of a modem. In Fig. 11, we plot results from one such
experiment. The receiver was a Pentium PC, running Linux
2.0.27 and was connected to the Internet via a commercial
service provider using a 28.8-kbyte/s modem. The results are
for a 1-h connection divided into 100-s intervals.

We have also assumed that all of our senders implement TCP
Reno as described in [6], [18], and [19]. In [14] and [15], it is
observed that the implementation of the protocol stack in each
operating system is slightly different. While we have tried to ac-
count for the significant differences (for example in Linux the
TD loss indications occur after two duplicate ACK’s), we have
not tried to customize our model for the nuances of each op-
erating system. For example, we have observed that the Linux
exponential backoff does not exactly follow the algorithm de-
scribed in [6], [18], and [19]. Our observations also seem to in-
dicate that in the Irix implementation, the exponential backoff

Fig. 11. Manic top5, RTT = 4:726, T = 18:407,W = 22, 1� 1 h.

Fig. 12. Comparison with the Markov model: RTT= 0:47 s,T = 3:2 s,
W = 12.

is limited to , instead of . We are also aware of the observa-
tion made in [15] that the SunOS TCP implementation is derived
from Tahoe and not Reno. We have not customized our model
for these cases.

During the course of the analysis presented in Section II, we
made several simplifying assumptions to obtain a closed-form
solution. We have carried out a more detailed stochastic
analysis, leading to a Markov model of TCP Reno [13]. This
Markov model does not appear to have a simple closed-form
solution. However, when solved numerically, the predictions of
the Markov model closely match the predictions of the model
proposed in this paper. In Fig. 12, we compare the Markov
model with the model presented in this paper. The closeness of
the match between the two models is evident.

V. THROUGHPUT OF ABULK TRANSFERTCP FLOW

In the previous sections, we have focused our attention on
investigating the send rate of a bulk transfer TCP flow. The
steady-state performance of such a flow may also be charac-
terized bythroughput, which is the amount of data received by
the receiver in unit time. The formula derived in Section II cal-
culates the send rate. The same analysis can be easily modi-
fied to calculate throughput. Consider (21). It should be clear
that to calculate throughput, instead of send rate, we only need
to modify the numerator. We need to calculate the number of
packets that make it to the receiver in a TDP, (counterpart of

) and in the time-out sequence (counterpart of ). Let
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us define these to be and , respectively. We can then
calculate the throughput, denoted by , as

(34)

Since only one packet makes it to the receiver in a time-out
sequence (i.e., the packet that ends the time-out sequence), it
is evident that

(35)

To calculate the number of packets that reach the receiver in
a TDP, consider Fig. 2. The TD event is induced by the loss
of packet . Let the window size be , when the loss occurs.
Then, the number of packets received by the receiver is

(36)

In Section II, we have shown that: and
. From (35) and (36), along with the analysis for

and from Section II, we get

RTT

RTT

otherwise
(37)

where , , and are defined as shown in (38),
shown at the bottom of the page. In Fig. 13, we plot the send rate
and throughput of a bulk transfer TCP flow with the following
parameters: , RTT ms, and s.

VI. CONCLUSION

In this paper we have presented a simple model of the TCP
Reno protocol. The model captures the essence of TCP’s con-

Fig. 13. Comparison of throughput and send rate.

gestion avoidance behavior and expresses send rate as a func-
tion of loss rate. The model takes into account the behavior of
the protocol in the presence of time-outs, and is valid over the
entire range of loss probabilities.

We have compared our model with the behavior of several
real-world TCP connections. We observed that most of these
connections suffered from a significant number of time-outs. We
found that our model provides a very good match to the observed
behavior in most cases, while models proposed in [8], [9], and
[12] significantly overestimate send rate. Thus, we conclude that
time-outs have a significant impact on the performance of the
TCP protocol, and that our model is able to account for this
impact. We have also derived a simple expression for calculating
the throughputof a bulk transfer TCP flow.

A number of avenues for future work remain. First, our model
can be enhanced to account for the effects of fast recovery and
fast retransmit. Second, we have assumed that once a packet in
a given round is lost, all remaining packets in that round are
lost as well. This assumption can be relaxed, and the model can
be modified to incorporate a loss distribution function. Third,
it is interesting to further investigate the behavior of TCP over
slow links with dedicated buffers (such as modem lines). We are
currently investigating more closely the data sets for which our
model is not a good estimator.
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