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The calculation of the distribution of a linear combination of order statistics from random
variables that are uniformly distributed is considered. A simple recursion to com-

pute this distribution is presented that, unlike previous methods, is numerically stable and
efficient. As such, this should be the algorithm of choice when the linear combination
distribution needs to be obtained.
(Reliability: Availability; Probability: Stochastic Model Applications; Probability: Markov Processes;
Probability: Distributions; Statistics; Order Statistics; Performability )

1. Introduction
The distribution of a linear combination of order
statistics from a set of random variables is a
measure of interest in many problems. Examples
include asymptotic theory (Chernoff et al. 1967,
Eicker and Puri 1976), estimation and hypothesis test-
ing (D’Agostino and Stephens 1986, David 1981),
and, more recently for the case of uniform random
variables, performability modeling and analysis (de
Souza e Silva and Gail 1989, 1998, Qureshi and
Sanders 1994). Calculating the distribution of a linear
combination of random variables is not an easy task,
even in the uniform case.
Let a1� � � � � an be non-negative real numbers, and let

U�1�� � � � �U�n� be the order statistics from a set of n
independent and identically distributed random vari-
ables uniform on �0�1�. The random variable G =∑n

j=1 ajU�j� is a linear combination of the order statis-
tics U�j�. Dempster and Kleyle (1968) obtained an
expression for the distribution of G when all order
statistics are present in the sum, that is, when aj >
0� j = 1� � � � �n. Weisberg (1971) generalized the results
of Dempster and Kleyle and derived a formula for the
distribution of a linear combination of selected order
statistics from a uniform distribution, that is, for the

case when some of the aj are zero. From this formula
Weisberg developed a recursive algorithm to calculate
the distribution of G.
Matsunawa (1985) considered the probability den-

sity function for a linear combination of selected order
statistics from a uniform distribution. He showed
that G can be represented in terms of a ratio of lin-
ear combinations of mutually independent gamma
random variables. Furthermore, he showed that the
pdf of G is the same as that of a mixture of scaled
beta distributions. Normal approximations to the
exact distribution are also investigated in Matsunawa
(1985). Ramallingam (1989) made a slight correction to
the pdf formula of Matsunawa (1985) and suggested a
method of computing expressions for the coefficients
of the pdf formula using symbolic manipulation. This
technique is also useful for calculating the moments
of G.
One problem with using the approach of Mat-

sunawa for computation is the complexity involved in
evaluating the coefficients from the expression given
in Matsunawa (1985) (see, for instance, equation 3.8
in that paper). Furthermore, although the formula for
the distribution of G and the corresponding recursive
procedure given by Weisberg are relatively simple, the
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resulting calculations are unfortunately susceptible to
numerical problems. In fact, the procedure may lead
to the subtraction of large numbers that are close in
modulus, with a subsequent loss of precision or an
overflow/underflow condition. The above problems
make it difficult to compute the distribution of G with
known techniques.
The calculation of the distribution of a linear com-

bination of uniform order statistics is also of inter-
est in the area of performability modeling and anal-
ysis. Consider a Markov process for which reward
rates are associated with the states of the process,
i.e., when the system is in a certain state it earns a
reward at the rate corresponding to that state. The
distribution of the total reward accumulated dur-
ing a finite observation period, which is also known
as the performability distribution (Meyer 1980), was
obtained by de Souza e Silva and Gail (1989, 1998).
The methodology that they proposed was based on
the observation that, after first using the uniformiza-
tion technique (Grassmann 1977a, b) to transform the
original Markov process, the performance measure of
interest can be calculated using the distribution of the
linear combination G. Although the algorithm pre-
sented in this paper cannot be used directly in com-
puting the distribution of accumulated reward, it is
shown in Diniz (2000) that a slightly more expen-
sive recursion for the distribution of G can lead to an
efficient and stable algorithm for calculating the total
reward using the methodology of de Souza e Silva
and Gail (1989, 1998).
The purpose of this paper is to derive a new, simple

recursion for calculating the distribution of G that
is also numerically robust, since it involves only the
addition and multiplication of terms that are prob-
abilities. In Section 2 relevant background material
is provided, while in Section 3 the main results that
lead to the new algorithm we develop are presented.
Section 4 includes simple examples that illustrate
numerical problems that may occur when using recur-
sions from previous work, and it also includes com-
parisons of results from these recursions with those
obtained from our algorithm. Finally in Section 5 we
summarize the paper and discuss additional work
generated from the results presented here.

2. Background Material
In this section we present necessary background
material and introduce the notation that will be used
throughout the paper. We begin by presenting a brief
review of linear combinations of order statistics.
Let U1�t�� � � � �Un�t� be independent and identically

distributed random variables uniform on �0� t�, and
let U�j��t� be the jth smallest value from these random
variables with the convention that U�0��t� = 0 and
U�n+1��t� = t. Then U�1��t�� � � � �U�n��t� are the order
statistics of U1�t�� � � � �Un�t�. Since the random vari-
able U�j��t� associated with the interval �0� t� has the
same distribution as tU�j��1� associated with the inter-
val �0�1�, without loss of generality we may consider
the case with t = 1. In the remainder of the paper
we use the simplifying notation U�j�

�=U�j��1�. Figure 1
shows an example for n= 5.
Consider the linear combination of order statistics

G=
n∑
j=1

ajU�j�� (1)

where each aj ≥ 0 is a real number. The interval
lengths Yj =U�j� − U�j−1�, j= 1� � � � �n+1, are exchange-
able random variables (Ross 1983). Substituting the
formula U�j� =

∑j
i=1 Yi into (1) and interchanging sum-

mations in the resulting expression yields

G=
n+1∑
j=1

djYj� (2)
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Figure 1 A Set of Uniform Order Statistics on �0�1�
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where we have defined dj = aj +· · ·+ an, j = 1� � � � �n,
and also set dn+1 = 0.
From the definition of dj , we see that d1 ≥ · · · ≥

dn+1 = 0 and dj+1 = dj when aj = 0 for j = 1� � � � �n. Let
� = �c1� � � � � cS� be the set of distinct values among
d1� � � � � dn+1 (thus 1< S ≤ n+1). Then c1 > · · ·> cS = 0,
and so we have c1 ≥ G ≥ cS since

∑n+1
j=1 Yj = 1. Define

k = �k1� � � � � kS� where kl is the number of interval
lengths Yj associated with cl, l = 1� � � � � S. Note that
	k	 �= k1+· · ·+kS = n+1≥ 1, since n≥ 0.
A solution to the problem of determining the distri-

bution of a linear combination of uniform order statis-
tics was found by Weisberg (1971). As a consequence
of Weisberg’s result it was shown in de Souza e Silva
and Gail (1998) that the distribution of G = G�k� is
given by

P�G�k�≤ r� = ∑
l�cl≤r

f
�kl−1�
l �cl� r�k�
�kl−1�!

(3)

P�G�k� > r� = ∑
l�cl>r

f
�kl−1�
l �cl� r�k�
�kl−1�!

� (4)

where f
�kl−1�
l �cl� r�k�� l = 1� � � � � S, is the �kl − 1�st

derivative of

fl�x� r�k�=
�x− r�n∏
j �=l�x− cj�

kj
(5)

evaluated at x = cl ∈�.
In Weisberg (1971) a recursive formula was devel-

oped to calculate the derivatives of fl, namely,

f
�q�
l �x� r�k�=

q−1∑
j=0

(
q−1
j

)
f
�j�
l �x� r�k�g�q−1−j�l �x� r�k��

(6)
where

g
�j�
l �x� r�k�= �−1�j j!

[
n

�x− r�j+1
−∑

i �=l

ci
�x− ci�

j+1

]
� (7)

The presence of positive and negative terms in the
summation above can lead to numerical problems
when using this recursion.

Remark. The general case of arbitrary real aj can
be reduced to the case for which aj ≥ 0 by a reorder-
ing and shifting, as suggested in Dempster and Kleyle
(1968). Specifically, first reorder the dj of equation (2)

in descending order, that is, let  be a permutation of
�1� � � � �n+ 1� such that d �1� ≥ · · · ≥ d �n+1�. Note that
G =∑n+1

j=1 d �j�Y �j�. Since the Yj are exchangeable, the

random variable H
�=∑n+1

j=1 d �j�Yj has the same distri-
bution as G. Using the definition of Yj , we have

H =
n∑
j=1
�d �j�−d �j+1��U�j�+d �n+1�U�n+1��

Since U�n+1� = 1, we see that G∗ �=H−d �n+1� is a linear
combination of U�1�� � � � �U�n� with non-negative coef-
ficients. Thus we have P�G ≤ r� = P�H ≤ r� = P�G∗ ≤
r−d �n+1��.

3. The New Algorithm
In this section we present a new efficient algorithm
for calculating the distribution of a linear combination
of uniform order statistics. We then discuss the issues
related to its implementation and its computational
requirements.

3.1. Recursions for fl
The form (5) of the functions fl will be exploited to
obtain a stable recursion for P�G�k� > r�.

Definition 1. For k = �k1� � � � � kS� where 	k	 =
n+1, define

h�x� r�k�= �x− r�n∏S
l=1 �x− cl�

kl
� (8)

Lemma 1. For i �= j, ki > 0, kj > 0, we have

(
ci− r

ci− cj

)
h�x� r�k−1j �+

(
r− cj

ci− cj

)
h�x� r�k−1i�

= h�x� r�k�� (9)

Proof. A computation shows that(
ci− r

ci− cj

)
h�x� r�k−1j �+

(
r− cj

ci− cj

)
h�x� r�k−1i�

=
(
ci− r

ci− cj

)
h�x� r�k�

x− cj

x− r

+
(
1− ci− r

ci− cj

)
h�x� r�k�

x− ci
x− r
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= h�x� r�k�
x− r

×
{
�x− ci�+

(
ci− r

ci− cj

)
��x− cj�− �x− ci��

}

= h�x� r�k��

and so (9) holds.
For l = 1� � � � � S, Weisberg’s function fl is simply

fl�x� r�k� = �x− cl�
klh�x� r�k�. This motivates the fol-

lowing definition.
Definition 2. For l = 1� � � � � S, and integer m, let

hl�x� r�k�m�= �x− cl�
mh�x� r�k�� (10)

Note that fl�x� r�k�= hl�x� r�k� kl�.

Lemma 2. For i �= j, ki > 0, kj > 0, and integers q ≥ 0
and m, we have(

ci−r
ci−cj

)
h
�q�
l �x�r�k−1j�m�

+
(
r−cj
ci−cj

)
h
�q�
l �x�r�k−1i�m�=h�q�l �x�r�k�m�� (11)

Proof. Multiplying equation (9) by �x− cl�
m, we

obtain (11) for the case q= 0. Differentiating this result
q times gives (11) for general q.
Dividing the terms of (11) by q! yields a recursion

that, at first glance, seems to apply to the calculation
of the distribution of G in equations (3)–(4). However,
such a recursion would involve setting m equal to the
lth entry of the vectors k�k− 1i�k− 1j , in the three
terms of (11), and these values are not necessarily the
same constant. But this potential problem vanishes
when the functions are evaluated at the point x = cl,
as is the case in (3)–(4).

Lemma 3. For m≥ kl, q ≥ 0, we have

h
�q+1�
l �cl� r�k�m+1�

�q+1�! = h
�q�
l �cl� r�k�m�

q! � (12)

Proof. First note that

hl�x� r�k�m+1�= �x− cl�hl�x� r�k�m��

Differentiating repeatedly yields

h
�q+1�
l �x� r�k�m+1� = �x− cl�h

�q+1�
l �x� r�k�m�

+ �q+1�h�q�l �x� r�k�m�� (13)

where recall that

hl�x� r�k�m� = �x− cl�
mh�x� r�k�

= �x− cl�
m−kl �x− r�n∏

j �=l �x− cj�
kj
�

Now h
�q�
l �cl� r�k�m� is finite for all q, since m−kl ≥ 0

and cj �= cl for j �= l. Therefore, evaluating (13) at x= cl
and dividing the result by �q+1�! gives (12).

Definition 3. For l = 1� � � � � S, let

$l�r�k�=


f
�kl−1�
l �cl� r�k�
�kl−1�!

if kl > 0

0 if kl = 0.
(14)

In the above definition recall that fl�cl� r�k� =
hl�cl� r�k� kl�.

Theorem 1. For i �= j, ki > 0, kj > 0, l = 1� � � � � S, we
have (

ci−r
ci−cj

)
$l�r�k−1j �+

(
r−cj
ci−cj

)
$l�r�k−1i�

=$l�r�k�� (15)

Proof. First suppose that l �= i, l �= j. In this case
�k−1j �l = �k−1i�l = kl. If kl = 0, then all $l terms in
(15) are zero and the result holds. Otherwise, (15) fol-
lows by evaluating (11) at x= cl and setting q = kl−1,
m= kl.
Next assume that l = i. In this case kl > 0, and

�k−1j �l = kl, �k−1i�l = kl−1. First suppose that kl =
1. Then hl�cl� r�k− 1i�1� = 0, since h�cl� r�k− 1i� =
h�cl� r�k−1l� is finite. Thus from (11) with m= 1 and
q = 0 we obtain(

ci− r

ci− cj

)
fl�r�k−1j �= fl�r�k�� (16)

Now �k−1i�l = 0 when kl = 1, so $l�r�k−1i�= 0. Thus
(16) is really (15) in this case. Next suppose that kl > 1.
Then from (12), we have

h
�kl−1�
l �cl� r�k−1i� kl�

�kl−1�!
= h

�kl−2�
l �cl� r�k−1i� kl−1�

�kl−2�!
= $l�r�k−1i�� (17)

Evaluate (11) at x = cl and set q = kl−1, m= kl. Then,
using (17) on the second term on the left hand side
yields (15).
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Finally assume that l = j. Then we have �k−1j �l =
kl−1 and �k−1i�l = kl. The proof proceeds in the same
manner as that for the case l = i above.
We have shown how to calculate $l�r�k� recur-

sively on 	k	 for vectors with at least two nonzero
entries. Since 	k	 ≥ 1, we need only determine
$l�r�k� for those vectors k with exactly one nonzero
entry (i.e., k = kj1j for some j) to complete the recur-
sion. Noting that an empty product is equal to 1, from
(5) and (14) the initial conditions are (for j = 1� � � � � S,
l = 1� � � � � S)

$l�r� kj1j �=
{
1 j = l

0 j �= l�
(18)

Similar recursions can be obtained for arbitrary
sums of the $l as follows.

Definition 4. For 	k	 = n+1, � ⊂ �1� � � � � S�, let

%�r�k�� �=∑
l∈�

$l�r�k�� (19)

Theorem 2. For i �= j, ki > 0, kj > 0, � ⊂ �1� � � � � S�,
we have(

ci− r

ci− cj

)
%�r�k−1j�� �+

(
r− cj

ci− cj

)
%�r�k−1i�� �

= %�r�k�� �� (20)

Proof. Use Theorem 1 for each individual $l and
sum the results over l ∈� .
The initial conditions in this case are (for j =

1� � � � � S)

%�r� kj1j�� �=
{
1 if j ∈�

0 if j �∈� �
(21)

3.2. A Stable Recursion for the Distribution of G
From the characterization (3)–(4) of the distribution
of G, certain values of the subset � in (19) yield
recursions for P�G�k� ≤ r� and P�G�k� > r� using
Theorem 2. In particular, two subsets of interest are

�
�= �l � cl > r�� �

�= �l � cl ≤ r�� (22)

Definition 5. For 	k	 = n+1, let
$�r�k� = %�r�k���= ∑

l�cl>r

$l�r�k�� (23)

&�r�k� = %�r�k���= ∑
l�cl≤r

$l�r�k�� (24)

Note from (3)–(4) and (14) that

$�r�k� = ∑
l�cl>r

f
kl−1
l �cl� r�k�
�kl−1�!

= P�G�k� > r�� (25)

&�r�k� = ∑
l�cl≤r

f
kl−1
l �cl� r�k�
�kl−1�!

= P�G�k�≤ r�� (26)

Therefore, recursions for $ or & yield algorithms for
calculating the distribution for a linear combination
of uniform order statistics.
Recall that c1 > · · ·> cS = 0 and c1 ≥G≥ cS . If cS > r

then P�G�k� > r�= 1, while if c1 ≤ r then P�G�k�≤ r�=
1. Thus, to avoid trivial cases we assume that c1 > r ≥
cS , that is, we assume that � and � are nonempty sets.
When applying the recursion of Theorem 2 to $ or &
to calculate the distribution of G, a judicious choice
of the indices i and j should be made at each step in
order to ensure that the resulting algorithm is numer-
ically stable. Suppose 	k	 = n+ 1 and ki > 0, kj > 0
for some i ∈�, j ∈�. An important observation about
using this choice in Theorem 2 is that the coefficients
satisfy

0≤ ci−r
ci−cj

≤1� 0≤ r−cj
ci−cj

≤1� ci−r
ci−cj

+ r−cj
ci−cj

=1�

because ci > r ≥ cj . That is, with such a choice at each
step the algorithm only deals with sums and prod-
ucts of real numbers between 0 and 1, and so it is
numerically stable.

Definition 6. For 	k	=n+1, � ⊂ �1� � � � � S�, let k�

be the vector with entries

�k� �l =
{
kl if l ∈�

0 if l �∈� .
(27)

Note that 	k�	 =
∑

l∈� kl.
Since � and � partition the set �1� � � � � S�, we have

k� +k� = k for any vector k. The stable recursions
for $ or & based on Theorem 2 handle the case of
k for which both 	k�	 > 0 and 	k�	 > 0. The initial
conditions for these recursions involve the case for
which either 	k�	 = 0 or 	k�	 = 0. Note that k� and
k� cannot both be zero vectors, since 	k�	+	k�	 =
	k	 = n+1≥ 1.

Theorem 3. The following give numerically stable
recursions for calculating P�G�k� > r� in part (i) and
P�G�k�≤ r� in part (ii).
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(i) For 	k�	> 0, 	k�	> 0, choose i ∈ �, j ∈� such
that both ki > 0, kj > 0. We have(

ci− r

ci− cj

)
$�r�k−1j �+

(
r− cj

ci− cj

)
$�r�k−1i�

= $�r�k�� (28)

The initial conditions are: For either 	k�	 = 0 or
	k�	 = 0 (but not both)

$�r�k�=
{
0 if 	k�	 = 0
1 if 	k�	 = 0.

(29)

(ii) For 	k�	> 0, 	k�	> 0, choose i ∈ �, j ∈� such
that both ki > 0, kj > 0. We have(

ci− r

ci− cj

)
&�r�k−1j �+

(
r− cj

ci− cj

)
&�r�k−1i�

= &�r�k�� (30)

The initial conditions are: For either 	k�	 = 0 or
	k�	 = 0 (but not both)

&�r�k�=
{
1 if 	k�	 = 0
0 if 	k�	 = 0.

(31)

Note that the recursions for $ and & have the
same form, but the initial conditions for these two
measures are the opposite of one another. Although
one could theoretically compute the distribution of
G using the recursion for the complementary distri-
bution and then calculating 1−$, such a procedure
should be avoided since the subtraction of similar
quantities could lead to numerical problems. A direct
application of the recursion for & in Theorem 3
should be used instead. A similar comment applies
to computing the complementary distribution, which
should always be done directly using the recursion
for $.

Remark. Instead of using a convex combination
of just two $, it may be useful to consider sums
with more terms. To this end, we prove the following
lemma.

Lemma 4. Let � ⊂ �1� � � � � S�, and suppose kl > 0 for
all l ∈ � . Suppose there are 'l, l ∈ � , such that: (i)∑

l∈� 'lcl = r ; and (ii)
∑

l∈� 'l = 1. Then∑
l∈�

'lh�x� r�k−1l�= h�x� r�k��

Proof. We have∑
l∈�

'lh�x� r�k−1l� =
∑
l∈�

'lh�x� r�k�
x− cl
x− r

= h�x� r�k�
x− r

∑
l∈�

'l�x− cl�

= h�x� r�k��

where the last equality follows from (i) and (ii).
Note that when � = �i� j�, we have the previous

result. In this case, 'ici+'jcj = r and 'i+'j = 1. The
only solution of these two equations is

'j =
ci− r

ci− cj
� 'i = 1−

ci− r

ci− cj
= r− cj

ci− cj
�

3.3. Computational Requirements
Suppose k∗ is a given vector, r ≥ 0, and consider
the recursion for P�G�k∗� > r� described in part (i) of
Theorem 3. To compute $�r�k∗�, note that only the
values of $�r�k∗ − 1i� and $�r�k∗ − 1j � need to be
stored, where ci > r ≥ cj , k∗i > 0 and k∗j > 0. For nota-
tional convenience, set 	k∗

�	 =M and 	k∗
�	 = N .

As an example, when k∗ = �2�1�1�1� and c1 >

c2 > r ≥ c3 > c4, the recursive scheme is illustrated in
Figure 2. In particular, in this case M = 3 and N = 2.
Each vector k in the figure represents a linear com-
bination of order statistics, and the iteration parame-
ters are ng = ng�k�= 	k�	 and nl = nl�k�= 	k�	. Each
vector also has a corresponding $ value. From the
initial conditions for $, we see that all vectors in the
first row have $ value 0, while all vectors in the first
column have $ value 1.

<0,0,0,1> <0,0,1,1>

<2,0,0,0>

<1,0,0,0> <1,0,0,1> <1,0,1,1>

<2,1,0,1>

<2,0,0,1>

<2,1,0,0>

<2,0,1,1>

<2,1,1,1>

n  = 0g

n  = 1g

n  = 2g

n  = 3g

n  = 0l n  = 1l n  = 2l

Figure 2 Recursion for k∗ = �2�1�1�1�
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For general k∗, the recursion proceeds either by col-
umn or by row depending on the relative values of
M and N . Thus only one vector of dimension M + 1
or N +1 is necessary to implement the algorithm, and
so it has O�min�M�N�+1� storage requirements. Fur-
thermore, in terms of number of operations, to calcu-
late a value $�r�k� requires two multiplications. We
suggest that the recursion should be carried out for ng
increasing from 1 to M for a given value of nl when
M ≤ N , while it should be carried out for nl increas-
ing from 1 to N for a given value of ng when N ≤M

(as in Figure 2). Since in either case we clearly have
a total of O�2MN� multiplications, the above sugges-
tion is based on storage considerations.
A direct implementation of the algorithm of Weis-

berg (1971) requires O�2M + 2N� amount of stor-
age and O�Sg��

∑S
j=1�k

∗
j �
2�/2+��M+N�/2�+S�M+N���

number of operations, where S is the cardinality of �
and Sg is the cardinality of �.
Let us compare the method of Weisberg with the

algorithm introduced in this paper for a symmetric
vector k∗ = �k�k� � � � � k�. If half of the cj lie above r ,
then Sg = S/2 and so M = N = Sk/2. In this case a
direct implementation of the algorithm in Weisberg
(1971) has O�S2k2/4+S2k/4+S3k/2� number of oper-
ations and O�2Sk� storage requirements, while the
algorithm introduced in this paper has O�S2k2/2�
number of operations and O�Sk/2+1� storage require-
ments. If only one cj lies above r , then Sg = 1 and so
M = k and N = �S− 1�k. In this case the method of
Weisberg has O�Sk2/2+Sk/2+S2k� number of opera-
tions and O�2Sk� storage requirements, while the new
algorithm has O�2�S−1�k2� number of operations and
only O�k+1� storage requirements.
Although the algorithm introduced in this paper

always requires less storage than the method of
Weisberg, it often requires a greater number of oper-
ations. However, this new algorithm only involves
multiplication and addition of real numbers between
0 and 1, and as such does not have numerical prob-
lems. On the other hand, as shown in the examples
below, the algorithm in Weisberg (1971) can be numer-
ically unstable and produce incorrect results.

Table 1 P �G�k∗� > r 	 for�= 
10�7�5�3�0� and k∗ = �10�15�10�10�6�

r Weisberg New Algorithm

1.5 7541�31249802409 1
2.0 15�8842468261718 1
2.5 1�33160880208015 0�999999999997047
3.0 1�02277084691741 0�99999999560917
3.5 1�0000717345141 0�999998459166096
4.0 0�999835132474087 0�999832806426978
4.5 0�993687361245975 0�993687357886866
5.0 0�914963241542523 0�914963241541414
5.5 0�585808192636392 0�58580819263635
6.0 0�166874001328608 0�166874001328606

4. Examples
In order to evaluate the accuracy of the new
algorithm, we first consider the example that was
presented in (Weisberg 1971). In this example G =
3U�10�+2U�25�+2U�35�+3U�45� with n= 50, and so � =
�10�7�5�3�0� and k∗ = �10�15�10�10�6�. Table 1 lists
the results obtained from the two algorithms and
shows that they agree for large r . However, the algo-
rithm of Weisberg can become numerically unstable
in some cases, since the subtraction of numbers close
to each other can lead to overflow problems. This can
be observed for small r , with better behavior as r
increases.
Table 2 shows another example, this time with

input parameters � = �10�9�5�5�4�3�0� and k∗ =
�10�15�10�10�10�6� (i.e., G= �5U�10�+4�5U�25�+U�35�+
U�45�+3U�55� with n= 60). The � parameters have been
chosen to be closer together, which should produce
larger intermediate values in the calculations with
the Weisberg algorithm than in the previous example.

Table 2 P �G�k∗� > r 	 for � = 
10�9�5�5�4�3�0� and k∗ = �10�15,
10�10�10�6�

r Weisberg New Algorithm

2 −1.88894659314788e+22 1
3 −9.22337203685478e+18 0�999999999993862
4 −1.40737488355328e+15 0�99999617120683
5 23622320128 0�985405358720513
6 2048 0�448627055861267
7 0.00628662109375 0�00631140143294818
8 1.35861439487517e−07 1�35861439586292e−07
9 1.04466981693112e−18 1�04466981693112e−18
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Table 3 P �G�k∗� > r 	 for � = 
10�9�5�5�4�3�0� and k∗ = �50�75�50,
50�50�30�

r Weisberg New Algorithm

2 −3�39928315402731e+185 1
3 −2�35872651551346e+167 1
4 −3�49635837635391e+146 1
5 −2�00124365551735e+121 0�999999355320442
6 −7�0023111686498e+89 0�384244123695832
7 −3�28837868399453e+49 1�20833201712547e−08
8 −4�36557456851006e−11 6�05151575310456e−31
9 1�08174101937241e−85 1�0817410193724e−85

This causes numerical problems to be more likely, as
is apparent from the table.
The results obtained for the algorithms when n is

increased (the number of intervals is multiplied by 5)
are shown in Table 3.

5. Summary
We have obtained a new recursion for calculating
the distribution of a linear combination of selected
uniform order statistics. The recursion is surprisingly
simple, involves only sums and products of prob-
abilities and is numerically robust. The results of
this paper can be immediately applied when one
needs only to calculate the linear combination distri-
bution. The approach developed here also leads to an
additional recursion for this distribution, which has
similar numerical properties but is more computation-
ally intensive (see Diniz 2000). However, it has been
shown that the recursion from Diniz (2000) can be
combined with the methodology of de Souza e Silva
and Gail (1989) to obtain a new simple algorithm for
calculating the distribution of cumulative rate reward
over a finite observation period.
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