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In an on-demand video server environment, clients make requests
for movies to a centralized video server. Due to the stringent re-
sponse time requiremen~s, continuous delivery of a video stream
to the client has to be guaranteed by reserving sufficient resources
required to deliver a swam. Hence there is a hard limit on the
number of streams that can be simultaneous y deli vemd by a server.
The server can satisfy multiple requests for the same movie using a

single disk 1/0 strum by sending the same data pages to multiple

clients (using the multicmt facility if present in the system). This
can be achieved by batching requests for the same movie that arrive
within a shon duration of time. In this paper, we consider various
policies for selecting the movie to be rnulticmt. The choice of a

policy depends very much on the customer waiting time tolerance
before reneging. We show that an FCFS policy that schedules the
movie with the longest outstanding request can perform better than
the MQL policy that choo,ses the movie with the maximum num-

ber of outstanding requests. Additionally, if the user behavior can
be influenced by guaranteeing maximum waiting time then it may
be beneficial to pre-allocate a fixed number of srnarns for popular
movies. Finally, we demonstrate u..ing empirical distribution for
movie requests, that a substantial reduction (of the order of 60% ) in
required server capacity can be achieved by batching.

1 Introduction

Recent advances in communication and computer technology

have made fea..ible video-on-demand applications, where a
l~ge database of movies we ~tor~ in a set of ~en~~iz~

servers and played through high-speed communication net-
works by geographically distributed clients (see Figure 1)

[8, 15, 14]. Due to stringent response time requirements,
continuous delivery of a stream has to be guaranteed by re-
serving the resources needed for delivery (e.g. d;sk band-

width, CPU) [1, 14]. These resources are referred to as a

logical channel in the paper. Hence there is a hard limit on
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Batching

the number of stream..

by a server.

that can be simultaneously delivered

The playback reques~s for movies from different clients

are independent of each other and may arrive at random time
intervals. A new movie stream could be started to satisfy
each request. Commercial environments may contain a large
number of active clients, potentially in the thousands [17].

This would require a very large server capacity. However,

modern communication networks such as ATM are equipped

with a mttlticast facility [12, 11] i.e. the same message can be

sent to multiple clients without causing any extra overhead
to the server. This feature can be exploited to reduce the
number of streams required by a setver to support a given

number of clients. For example, if two clients make a request
for the same movie separated by a small time interval, then

by delaying the playback for the first client, the same server
stream can be used to satisfy both requests [1]. The multicast

facility need not be present in the distribution system. A video

server that reads once from disk and then sends separately the

data to multiple clients accrues the benefit of reading once
for multiple clients. In general, requests by multiple clients
for the same movie arriving within a short time duration can
be batched together and serviced using a single stream. This
is referred to M barchirrg in this paper. In the following, we

explore various scheduling policies that arise as a result of
this property.

ClienL$ may also request pausing and restarting of movies,

Such requests can be handled by setting aside a small number
of channels (catled contingency channels). This is outlined
in Section 2.3 and described in detail in [4, 51.

In general, increasing the batching window reduces the
required server capacity while also increasing the average

client waiting time. Clients may not atways be willing to
wait a longer time before being served and may cancel their

requests (or rtvtege). Thus there is a trade-off between de-

creasing server capacity and increasing both waiting time

and reneging probability. The average client waiting time
is also determined by the choice of a movie to be played at

any given time. The policy that chooses the movie with the
largest number of waiting clients attempts to minimize the
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number of lost customers. However, this policy may not be
fair since it does not pick the client who has been waiting

the longest. The maximum waiting time of a client before it
cancels its request (referred to as mteging time) itself can be
influenced by the scheduling policy. For example, a client

may not want to wait longer under uncertainty. However, the

client may be willing to wait if a maximum waiting time is

guaranteed. This can be achieved by starting movies at pre-

determined intervals. Such a guarantee maybe appropriate
only for frequently requested movies. These interactions be-

tween client behavior and scheduling policies are also studied
in this paper.

The queueing systems studied in this paper are distin-
guished from those in earlier works primarily by the combi-

nation reneging and batching property. The non-work con-

serving batching property appears as a result of the multicast

feature in multimedia systems. This has also been observed in

the context of broadcast delivery in videotex systems [19, 7].
In such a system, users submit independent requests to re-

trieve a specific page of information to a service computer.
However, all the retrieved pages are broadcast to all users
regardless of who requested it. Our system differs from the
videotex system in several ways. First, the service time in the

videotex system consists only of retrieving a page. (Broad-

casting of a page is instantaneous. ) Hence, all requests for

that page that amive until the instant of broadcast are served.
In contrast, the service (broadcast) time for a movie is very
long. Additionally, there are multiple channels for serving
movie requests in our system. Finally, the scheduling policy
in our system has to take into account the customer reneging
behavior.

A different model of batching in the context of video-

on-demand systems with impatient customers was studied

in [9](see also references therein). In this case it was assumed

that a pre-specified number of channels is available for each
video. Hence there is no competition for the channels among

different movies. As a result, the scheduling policies studied
in [9] are when to play a given video for a given number of

channels for that video rather than which video to play on
any available channel. The notion of unfairness was also not

considered in allocation of channels to different videos.

Loss systems have also been studied both in the classi-

cal literature [10 I and also in various communication sys-

tems [13, 201. The loss may occur due to two reasons. In
communication systems, the loss may occur due to finite re-
sources (e.g., buffer) and hence, the constraint on the queue

length. In some other queueing systems the loss may be

due to reneging [20] or due to missing hard real-time dead-
lines [16]. In our system, the individual client deadlines

are not known, and the loss is primarily due to reneging of
impatient clients. Also, in addition to minimizing reneging

probability, we explore the fairness issue for all request types

and interaction between the scheduling policy and customer

behavior.

The remainder of the paper is as follows. In section 2,
we propose several scheduling policies and dkcuss various

performance trade-offs associated with these policies. Due

to the batching property, the policies are hard to analyze

analytically. Hence the trade-offs amongst various policies

are studied using simulation in section 3. Section 4 contains

our concluding observations.

2 Assumptions and Proposed Policies

Across to the movies are non-unifo~ i.e., some movies

are more popular than others. Figure 2 shows the frequency

of rentals for various movies in a particular week in video
stores [171. It is interesting to note that the access frequencies
to various movies can be characterized by a Zipf distribution

with parameter 0.271.’ Popular (hot) movies can benefit sub-

stantially by batching multiple requests since a large number
of requests may arrive within a short time. The unpopular
(cold) movies on the other hand do not benefit horn mak-
ing a customer wait since there is a very little chance of

new requests arriving for the same movies. Therefore, fixed

batching intervals for all movies is not appropriate. A longer
waiting time may also cause a customer to leave. Satisfying

all requests may require a large server capacity. Hence, a
system may be configured to satisfy only a certain fraction
(say 95% or 99%) of requests. The various policies there-
fore differ in the choice of a movie to be multicast at any

given moment. A policy may choose to multicast only those

movies that satisfy the maximum number of requests. Such

a policy may not be fair since it may never serve requests for

very cold movies. Therefore, all policies may be guided by

three primary objectives:

●

●

Minimize Reneging Probability: This is a very im-

portant objective since a policy that minimizes reneging
probability for a given server capacity would require a

lower server capacity to satis~ a given acceptance rate.

Minimize Average Waiting llnw A secondary ob-

jective of a policy is to minimize average waiting time

and/or variance in the waiting time of the clients that are
served.

1tn a Zipf distribution, if the movies are sorted amxdistg to tbe ac-
cess frequencyUteriUsewm?ssfrequencyfor tbe ith movie is given by,
~i = c/i(l-e). wkfe Oistheparalmler fortbedisWitxstion~ CiSik

nomtahaon C(xtalanl-
2~ ~WW~g ~, a CUSXOOKXis said to renege if it leaves ~ q-

beforebeiig served.h thecummtemtext. his refessto aclient ttm cancels
its requestdue to excessive waitingtime.
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. Fairneas: An orthogonal objective of all policies is to
maximize fairness over requests for all movie types.
Intuitively, fairness is defined m equal reneging proba-

bility for all movie requests.

Note that the number of requests for a particular cold

movie may be very small during any time period. There-

fore, the reneging probability for a particular cold movie and
hence, unfairness may be difficult to estimate. The movies
can be clawified into bins, such that movies in each bin re-
ceive roughly the same number of requests. We now define
a measure of unfairness, as

(1)

where iM is the number of bins, r, is the reneging probability

of the it” bin movies and r,,,, is the average reneging proba-
bility over all bins. Note that unfairness is zero if movies in
all bins have the same reneging probability, and unfairness
increases as the values of r, deviate from that of rau. In the

example in Figure 2, the movies are divided into 10 bins such

that roughly 10% of the reques~s fall in each bin. We will

use this workload for the simulation study of the scheduling

policies in the next section.

2.1 Proposed policies

We propose two orthogonal classes of policies that select a

movie for multicasting based on either the number of waiting

customers or based on the customer that has been in the

system for the longest time.~ Alternatively, policies can be

devised that take into account both the waiting time m well

as the number of customers (e.g., sum of waiting time for
all customers for a movie as in [71). Such policies are more
complex and difficult to implement and will not be considered
in this paper.

. FCFS Policy: Under the Firsf Come Firs? Served pof-

icy the requests for all movies join a single queue which

we call the requests queue. Each customer may leave

the queue independently of others bawd on its reneging
time. Once the server capacity for delivering a stream

becomes available! the client at the front of the request!!

queue is served. Note that because of the multicast fa-
cility, all customer requests for the same movie are also

~Here wc assurrwany movie can be played on an available rcsourcc. For
example. by swiping across all disks. available disk bandwidthcan be used
for playing any movie. For multiple stipirsg groups, Ioixtbalancing can be
used as in 161.

4In this paper, we wsumc a srcady+tatc in arrival ram. In a transient
situation, clients may be delayed even it’capwity is available so as not to
exhaust tie server capacily with t-hetirst t’ewKtpSLS and 10atlow batching.

●

●

satisfied by the same stream. This non-work conserving

property which we call bafching makes itan interesting
queueing theory problem. Intuitively, FCFS seems a

fair policy since it selects a movie request independent

of the identity of the movie.

MQL Policy: Under the Maximum Queue Length pol-

icy, requests for each movie join a separate queue, and

the movie with the maximum queue length is selected
for multicmt. This is similar to the MRF (Maximum Re-
quest First) policy in 171. One drawback of this policy

is that it may choose only the hot movies since there are
very few requests for cold movies within a short time

period (within the reneging time of a customer). Hence,

this will considerably increase the reneging probability

of the requests for the cold movies causing an increase

in unfairness. However, the policy can better utilize
a small server capacity to reduce the overall reneging
probabi Iity.

FCFS-n Policy: This is similar to the FCFS policy ex-

cept that a fraction of the server capacity is reserved

and pre-allocated for batching requests for the n hottest
movies. For all the movies with dedicated streams, a

new stream is started every B minutes (referred to as

hatch intervaf5). The policy may be somewhat unfair
towards the cold movies. However, there are many ad-
vantages of pre-allocation of server capacity for the hot
movies. First, a guarantee on the maximum waiting time

can be provided for the request for the popular movies.

Such a guarantee can be used to influence the reneging

behavior of a customer. Second, the policy guarantees

a high acceptance probability with a relatively small
server capacity as the requests for the cold movies do
not interfere with the services for the hot movies. Note
however, that a large value of n may be inefficient since

a lot of reserved capacity for the movies that are not so
hot will be underutilized.

The remaining cold movies are served according to the

FCFS policy, i.e., FCFS-O is the same as the pure FCFS

policy. If no movie requests arrive for a particular re-

served stream for a hot movie, the stream can be used to
multicmt a cold movie. Note also that in a similar rnal-

ner we can define MQL-n policy where a certain amount

of server capacity is reserved for the n hottest movies,
and the remaining movie requests are served according
to the MQL policy. However, such a policy may not

be very interesting since the MQL policy already favors

the hottest movies.

Sln ~ ~mnl pWr, it is assumed rtral ati WIW movim we b~chcd

with tie same intcrvat. An analylicsd method br de(erminirrgan opdrnat
balching imcrval for each movie to minimize reneging is described in [51.
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2.2 Customer reneging behavior

The scheduling policy as well as the decision to pre-albcate
server capacity for certain movies also depend on the user
behavior. The amount of time an user will wait before de-

ciding to leave may not be known in advance w is the case
in deadline driven scheduling [ 16]. In general, the reneging

time of a client, which we denote by R, may be a random
variable with a general distribution. If the probability that a

customer leaves at any moment is independent of the amount

of time the client has been in the system (this happens if R
is exponentially distributed), and if the clients for all movies
have the same mean reneging time, then all customers in the
queue are equally likely to remain. Therefore, selecting a

movie for multicasting to satisfy certain objectives becomes

simpler. For example, the MQL policy will always perform

better than the FCFS policy in terms of minimizing the over-

all reneging probability. Similarly, simpler policies can be

devised to satisfy alternative objectives like minimizing un-
fairness etc. However, despite the analytical simplicity of the
exponential awumption, real people are unlikely to behave
that way. People will more likely to renege as the delay in
starting a movie increases. If the residual reneging time is

dependent on the amount of time the client has been in the
system, then policy selection becomes more difficult. The

customer reneging time can also be influenced through prior
negotiation, and this knowledge can be successfully exploited

in the scheduling of movies. In this paper, we will assume
two different models of customer reneging behavior.

Minimum Reneging Time: Under this model, each

customer is willing to wait at least Rn,in amount of time.

The remaining reneging time is assumed to be exponen-

tially distributed (i.e., W = R1r,i7i+ E, where R,,,i,, is

a constant and E is a exponentially distributed random
variable. Hence, R,,,i,, could be used M the duration

of a batching interval for the hot movies if the server

capacity is preallocated. This will make the reneging
probability of the client for the dedicated movies equal

to zero.

Maximum Waiting Time Guarantee: Under this

model, a customer does not agree to a minimum reneg-
ing time. However, customers agree to wait if a max-

imum waiting time, 1$’~a,, is guaranteed. This is

achieved by preallocating enough server capacity for

those movies such that a new stream is started every

WfrLaSamount of time. The remaining customers still
follow the minimum reneging time model.

2.3 VCR control

The policies proposed in Section 2.1 determine which of

the requests for new movies should be scheduled. However,
users may also be allowed to pause and then restart at arbitrary
times. It is likely that restarting users will be willing to wait
less time than users who are waiting for a movie to start.

An efficient method for dealing with pause and resume

requests by setting aside a small pool of channels (referred

to as contingency channels) is proposed in [4]. It provides

a srutis[ical guarantee that with high probability (e.g. 99%)
a restart request will be started within a pre-specified small
delay. First, if the user of a multicast stream pauses, a small
amount of buffer can be used for caching the blocks of the
multicast stream similar to [2]. [f the pause is short, the user

can be restarted without any delay. If the pause is longer,

the request can be batched with an existing stream if a suf-

ficiently close stream exists. Otherwise, the user is restarted

using a free channel from the contingency pool. In the case
of a user viewing a single stream, the stream is freed when the
user pauses, and the channel is returned either to the contin-
gency pool or is used for servicing a new request. A channel
from the contingency pool is allocated upon restart. Note
that since the method provides a statistical guarantee on the

waiting time. it is not necessary to reserve a channel for each

paused stream. This is more efficient than providing a deter-
ministic guarantee, which would require channel reservation

for paused streams. This method is studied in 15I where an al-

gorithm for determining the number of cent ingency channels
needed is described.

3 Simulation Study

We now compare performance of the proposed policies using

simulation.b The simulated environment models a commerc-
ial video-on-demand installation with thousands of concur-
rent users. Client requests are modeled as a Poisson arrival

process. Let A denote the client request rate. The value of J
is chosen such that the number of simultaneous users varies

from roughly 600 to 6000 (consistent with projected demand

[17] ). Each movie is assumed to be 2 hours long. Hence, the

value of J is varied from 5 to 50 per minute. The frequencies

for requesting various movies are assumed to be a skewed
distribution. We will approximate the empirical distribution
in 1181 (presented in Section 2) by a Zipf distribution with

the parameter 0.271 unless otherwise specified. The number
of different movies is resumed to be 92.

The simulation keeps track of starting and ending of each

btn [3] we show IM even with a 10Lot’simplifying assumption...both the
policies arc very hwd to model analytically.



movie as well as arrival, reneging and playing of each client
request. For each movie with dedicated service a new play-
back stream is started after a batch window interval, B,l,.

Movies witbout dedicated service are started once u server

channel becomes available and the movie is selected by the

scheduling policy. Note that with a cold start initially all

movie requests will be accepted, and given the long service

time duration (2 hours). it will be followed by total rejec-
tion of all requests for some time (except for the movies
with dedicated service). This pattern will be repeated sev-

eral times until the system reaches a steady state as a result
of randomness introduced by arrival time distribution. To

avoid such cyclic behavior. and to reach steady state quickly,

the system is initialized m follows. All streams are assumed

to be in use. and the residual service time for each stream

is assumed to be uniformly distributed between O and 120

minutes. The system is then run for an initial duration, T,,,,t.
during which no statistics are collected. The system is further
run for a simulation duration of T,,,. during which statistics

are collected. In all our experiments T,,,,~ was taken to be

2-$0 minutes. The duration T,,,,,, was adaptively controlled
so as to obtain good accuracy for reneging probability. The

simulation duration consists of multiple subdurations. Each

subdura(ion is of fixed length. T,,,,l,,f,,. (60 minutes in our

experiments). The simulation is run until the variance of

the reneging probability y (recomputed after each subduration )

drops enough to give the desired accuracy (0. l%).

3.1 Comparison of various policies

Figures 3 through 5 compare reneging probtibility, waiting

time of the accepted clients and unfairness, respectively, of

the MQL and FCFS policies, Two cases of the customer
reneging time with exponential distribution, one with a mean
of 3 and the other with a mean of 5 minutes are studied.
Figure 3 shows the overall reneging probability under these
two policies as a function of available server capacity. The
reneging probability is lower under the MQL policy than
under the FCFS policy for both values of mean reneging time.

This is due to the memory-less property of the exponential

distribution. At any scheduling point, the MQL selects the

movie with the largest number of waiting clients. and since
the reneging probability of any waiting client is the same,

MQL minimizes the overall reneging probability. Note that
this may not hold it’ the reneging probability of an waiting
client depends on the amount of the time it has been in the
system.

Figure 4 compares the average waiting time before a client

is served. The waiting times of the reneged clients are not in-

cluded in this estimation. Under the FCFS policy, a playback
stream may be used just to serve a single client request while
multiple client requests for a popular movie may be waiting.

Therefore, the mean waiting time over all clients is higher for
this policy than for the MQL policy. However, with a larger
server capacity the difference between the two policies is

narrowed substantially, and the absolute value becomes very

small (< 57c). This will be the operating range for most

systems. Note that the FCFS policy is easy to implement

as it maintains very Iittle state information. Therefore, from
practical considerations. the FCFS may be chosen over the

MQL policy. The FCFS is also the fairest policy M it treats all
customers equally. Figure 5 compares the unfairness of the

two policies. Recall from Section 2. the higher tbe value of
unfairness, the higher the difference in reneging probability

for different movies. For a small server capacity, the MQL

policy serves primari Iy the requests for the popular movies,

while ignoring individual requests for cold movies. Hence,

MQL has greater unfairness as compared to FCFS.

We have also compared the reneging probability of the

above two policies for uniform (()-6 and O-10 minutes) reneg-
ing time distributions in [3]. The gap between the two poli-
cies had narrowed for all cases. However. the relative order

had not changed, As a general rule. however, this will not

be true if the reneging probability of a waiting customer de-

pends strongly on the current value of waiting time. Figure 6

compares the reneging probability of the two policies, where

each client waits for an minimum of R,,,,,, minutes &fore
reneging. The remaining reneging time is exponentially dis-
tributed with the metin 5 minutes. For a small server capacity,
the MQL policy still results in a lower reneging probability.
However, with increasing server capacity the relative order

of the two polices are reversed. Most clients will be served

for a higher server capacity. The MQL policy pays no at-

tention to the amount of time each individual clienl has been

waiting in the system. The FCFS policy. in contmst. always
serves the client who has been waiting in the system for the

longest time.

3.2 Effect of dedicated server capacity

We now focus our attention only on the FCFS policy. A

variation of the basic FCFS policy, called FCFS-n policy,

that dedicates a certain amount of server capacity for tbe
most popular movies. can make a better trade-off between

the fairness and the reneging probability. Under such a ded-
icated policy, the requests for the n most popular movies are
batched every B minutes. The value of B is chosen as R,,,,,,

or W,,,,,z depending on the customer reneging behavior out-

lined in Section 2.2. This improves resource utilization for

the requests for the popular movies without increasing their

reneging probability. Figure 7 shows the effect of dedicated
server capacity on the reneging probability under the mini-
mum reneging time model (R,,, ,,, = 2). There is very little
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change in the reneging probdbi]ity particularly for a large
server capacity. A similar observation holds for I&in = 5.

Under the maximum waiting guarantee model, clients are
influenced to wait longer and hence dedicating server ca-

pacity for the popular movies can result in a lower reneging
probability for a given server capacity. Figure 8 shows the

effect of dedicated server capacity on reneging probability
for W,,,uz = 5 minutes. There is some improvement in

the reneging probability as the number of movies with dedi-

cated streams is increased. The improvement is smaller for
wmnz = 2 minutes [3]. At some point, however, dedicat-
ing server capacity for the not-so-popular movies may result
in inefficient utilization of resources. The optimal number
of movies with dedicated service will also depend upon the

arrival rate. This is further explored in the next subsection.

3.3 Capacity planning for 95% acceptance
rate

In this subsection, we explore the amount of server capacity
required such that the reneging probability of the clients is
less than 5%. The required capacity is obtained by repeating

the simulation following a secant search process on the server
capacity. Figure 9 compares the required server capacity for

MQL and FCFS to achieve the target reneging probability,

The customer reneging behavior is assumed to follow the
minimum reneging time model. For ~in = O, (i.e., cus-

tomer reneging time is exponentially distributed), MQL re-
quires less capacity than FCFS. However, for Rmin = 2,5

minutes, the order of the curves is reversed. Also, the gap
between the two policies increases with the arrival rate.

Figure 10 shows the effect of dedicating server capacity

on the required server capacity for achieving 5% reneging
probability under the maximum waiting guarantee model.

(As seen before, dedicating server capacity does not make
any difference to the reneging probability under the mini-
mum reneging time model.) For the sake of comparison, we
have also plotted the case of Wmaz = Oi.e. where customer

behavior cannot be influenced through dexlcation. The solid

lines represent the cases for the FCFS-20 policy (server ca-

pacity is dedicated for the top 20 movies) while the dashed
lines are for FCFS- 10. For W,,,az = 2 minutes, the curves

for FCFS- 10 and FCFS-20 intersect. At lower arrival rates,

the FCFS- 10 policy requires less server capacity than the
FCFS-20 policy with the situation being reversed at higher

arrival rates. This shows that the optimum number of movies

with dedicated service increases with the arrival rate. A sim-
ilar result can be seen for Wmaz = 5 minutes, except that the

crossover occurs at a lower arrival rate. This implies that m

w~~~azincreases> increming the number of movies with dedi-
cated services reduces the required server capacity. F@rre 11

shows the variation of required server capacity with the num-

ber of movies with dedicated service. For Wm.. = 2 and
J = 25,50 the optimum number of movies with dedicated

service is at 5 and 15 movies, respectively. Thus with in-
creasing arrival rate, it is effective to have a larger number of
movies with dedicated service. The corresponding curves for

W,,,az = 5 are much flatter and hence the choice of the num-
ber of movies for which dedicated service is to be provided

is less critical. Also, the optimum number of movies with

dedicated service is kwger than the corresponding number
with Wm.. = 2.

We finally comment on the effectiveness of the bdtching

policy in reducing the number of streams required by the
video server. Whhout batching each request will require a

separate stream. Then the lower bound on the capacity re-

quired for an arrival rate of A and service duration of D can
be estimated using Little’s law as AD. To estimate the ef-

fectiveness of batching under various scheduling policies we

also have to estimate the capacity required under a similar
environment without batching. Hence, a..suming 9590 accep-
tance ratio the lower bound on the required server capacity
is 0.95 M). Note that this is a conservative estimate since the
actual capacity required to satisfy all requests will be higher
due to statistical fluctuation in the arrival rate. Figure 12
shows the reduction in required server cap~ity due to batch-

ing corresponding to the cases in Figure 11. The reduction in
server capacity is expressed as a percentage of the required

capacity under no batching. Our estimate on the reduction
is conservative, since we use a lower bound, rather than the

actual server capacity (as explained above). As can be seen
from the figure, the amount of reduction depends not only on
the scheduling policy (e.g, number of dedicated movies) but
also on the request arrival rate. The reduction increases with

the arrival rate and for A = 50 the reduction ratio reaches
7070 in this example. Therefore, batching is more effective

for larger servers since there are more available requests for

batching. Not all applications would demand VCR control
and in a mixed environment different pricing structure can
be introduced to exploit the advantage of batching,

4 Summary and Conclusions

In an ondemand video server environment, multiple clients

request for playback of movies stored at a set of centralized
servers. Due to stringent response time requirements, each

server can play only a fixed number of concurrent streams.

By batching multiple client requests for the same movie, a
larger number of clients can be served for a given server ca-

pacity. In general, batching is more effective in larger servers
since there are more available requests for batching. In this

paper, we proposed and evaluated various scheduling policies
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that differ in their choice of a movie to be played when the

server capacity becomes available. Analytical modeling of

the proposed policies are inherently complex, and hence, the

policies are evaluated using simulation. The various policies
trade off various performance objectives. A longer delay in
serving a client may result in reneging. Hence, an important
objective of these policies is to reduce the reneging proba-
bility for all movie requests. Another objective is to reduce

the average waiting time before a client is served. The two

objectives may not always go hand in hand. A third objective

is to be fair to all requests (irrespective of the popularity of a

movie).

A FCFS policy always serves the longest waiting client,
thereby ensuring fairness. It is also easy to implement in

a real system m it needs to maintain very little information

about individual clients. The MQL policy on the other hand

serves the requests for the movie that has the largest number

of waiting clien(s. It therefore, attempts to maximize the

number of clients served, however, at the expense of fairness.
If the reneging probability of a client depends on the amount
of waiting, then the MQL policy may not even perform as
well as the FCFS policy, since the MQL policy does not take
into account the client waiting time. Therefore, FCFS is the
preferred policy.

Client waiting time behavior can also be influenced to im-

prove the performance of a scheduling policy. If the clients

agree to wait for a minimum amount of time before reneging,

then such information can be used to batch requests for the
popular movies. One way to exploit this information is to

dedicate enough capacity for the popular movies so as to start
a new stream for these movies once in every batching win-
dow. Results show that such dedication is not very significant
in improving the performance of the FCFS policy. A client

may not agree to such minimum reneging time under uncer-

tainty. However, it maybe willing to do so under a maximum
waiting time limit. In this case, dedicating enough capacity

for the popular movies may result in significant performance
improvement. The optimal number of movies for which the
server capacity is dedicated will depend on the maximum
waiting time guarantee and the movie request rate.

In this paper, we have focussed on the scheduling policies

for handling requests to start a movie. An efficient method

for allowing VCR control (pause, resume. etc. ) requests is

detailed in [4, 51.
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Figure 1: M“]ti-m~ia video server envi~nment
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Figure 3: Comparison of reneging probability (exponential reneg-
ing tiie disrnbution)
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Figure 4: Comparison of waiting times of the accepted ttqUL!SLS

(exponential reneging time distribution)
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Figure 5: Comparison of unfairness (exponential reneging time
disrnbution)
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Figure 6: Effect of minimum txmeging time on reneging probability
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Figure 7: Dedicated server capacity for hot movies (R~,” = 2
minutes)
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Figure 8: Dedicated capacity for hot movies (W~,,z = 5 minutes)
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Figure 9: Effect of minimum reneging time on required server
capacity for 95% accept. guarantee
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Figure 10: Effect of maximum mteging time guarantee on required
server capacity
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Figure 11: Effect of dedicated server cap&cityfor the hot movies
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