
Extending Model Transformations in the Performance
Domain with a Node Modeling Library

F. Duarte, W. Hasling,
W. Sherman, D. Paulish

Siemens Corporate Research,
Princeton, NJ

R. Leao, E. Silva
Federal University of Rio de

Janeiro, COPPE, Brazil

V. Cortellessa
University L’Aquila, Italy

ABSTRACT
We introduce a new methodology that employs an architecture fra-
mework that can be used to automatically generate simulation mod-
els based on the UML model diagrams created by requirements
engineers and software system architects. The framework takes ad-
vantage of a library of node models already specified by expert per-
formance engineers. We envision that requirements engineers and
architects will be able to generate optimized performance models
using this approach by annotating UML deployment diagrams and
sequence diagram models with performance requirements. In addi-
tion, they would be able to generate optimized simulation models
by putting together existing simulation nodes.

We report on our experience using our methodology to do a per-
formance analysis of a large e-commerce application employing
two different load balancing algorithms for the e-commerce appli-
cation server. We have found that generating the simulation model
using our approach was very efficient because requirements engi-
neers and architects did not have to worry about the details of the
simulation nodes implementation, which were developed by per-
formance engineers. Therefore, they could focus their work on the
UML diagram models that were related to their own domain of ex-
pertise.

Keywords: UML, Performance Analysis, Model Transforma-
tions, Global Software Engineering.

Categories Descriptors: Computing Methodologies, Simula-
tion and Modeling, Model Development, Modeling Methodologies

General Terms: Performance

1. INTRODUCTION
For the past few years, Siemens has been experimenting with

software development processes and practices for globally distribu-
ted projects using student-based development teams spread around
the world. The students who make up this development project
simulate an industrial software development project using common
practices for collaboration among distributed sites. We refer to this
experimental global software development project as the Global
Studio Project (GSP). Experiences with this project have been re-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WOSP’08, June 24–26, 2008, Princeton, New Jersey, USA.
Copyright 2008 ACM 978-1-59593-873-2/08/06 ...$5.00.

ported in a number of papers, and it has been documented as a case
study (GSP 2005) within [10].

This paper reports on a new methodology that is being imple-
mented by the GSP during the fourth year of the project, referred to
herein as GSP V4.0. For GSP V4.0, the focus is on improving the
user experience and extending the model transformation capabili-
ties of the UML to Performance Modeling architecture framework
(UML-PM) to specify and solve problems that are not solvable us-
ing product form queuing networks. Queuing network models have
product form solutions if they meet well defined statistical distribu-
tions and queuing disciplines as described in [5, 8]. These prod-
uct form queuing networks can be solved using analytical formulas
that have a well defined structure. The requirements engineering
of general purpose software applications using UML may specify
conditions that violate these product form requirements.

The approach introduced in this paper is designed to provide per-
formance engineering support for the evaluation of architecture al-
ternatives. These evaluations are usually executed early in the soft-
ware development process, when UML deployment diagram mod-
els are being designed, and sequence diagram models are being
specified.

We describe a methodology to efficiently build optimized sim-
ulation models using UML diagrams. We propose to annotate de-
ployment diagram models and sequence diagram models with ar-
rival rates and departure rates and to automatically generate perfor-
mance modeling scenarios from these diagrams. The approach is
efficient as it uses UML models to specify the message flow among
objects as well as the arrival and departure rates. In addition, our
approach uses a library of node types optimized for simulation so-
lutions. A platform node on the UML deployment diagram model
is associated with a node type that has already been implemented
by expert performance engineers. Therefore, our approach allows
for architects to focus on the UML diagram level of detail, while us-
ing the node type implementation provided by expert performance
engineers.

Using UML models to specify complex activity diagrams has the
potential of generating models that are not optimized for solution
with the performance model solver, because the perspective of the
requirements engineer and performance engineer are significantly
different. While the requirements engineer focuses on eliciting as
much detail as required to correctly specify a certain system fea-
ture, the focus of the performance engineer is on modeling the bot-
tleneck resources to enable efficient solution of the performance
model. In our approach, we propose that requirements engineers
focus their efforts on developing good sequence diagrams by un-
derstanding the application behavior, while performance engineers
focus on understanding the best way to model the nodes the ap-
plication executes on. Performance engineers develop libraries of

157

node types. Architects should use the library of node types when
developing deployment diagrams to make a mapping between the
software components used in the sequence diagram model and the
nodes types.

In the current UML modeling approach, activity diagrams are
used to completely specify system behavior at the UML model
level. The UML activity diagram modeling approach was designed
to be used by requirements engineers, and is well suited to require-
ments engineering work. However, for large industrial systems,
activity diagram based model specifications may not be well suited
to be applied to the model transformations that should result in an
efficient simulation model. For example, while we have encoun-
tered limitations to model the behavior of dynamic load balancing
algorithms using UML activity diagram models, we could easily
model these algorithms using the approach presented in this paper.

The paper is organized as follows. In Section 2, we present an
overview of the related literature. In Section 3, we present the ap-
proach for model transformation introduced in this paper. In Sec-
tion 4, we describe the UML-PM architecture framework that is
being developed to support the model transformation approach. In
Section 5, we use UML diagrams models and the modeling ap-
proach introduced in this paper to evaluate the performance of a
distributed e-commerce system. In Section 6, we present our con-
clusions and topics for future research.

2. RELATED WORK
Software performance engineering has encountered obstacles to

be accepted as a standard activity in the daily practices of soft-
ware engineers for two basic reasons: (i) special skills were often
required to build reliable/trustable performance models, (ii) short
time-to-market prevents time-expensive activities such as perfor-
mance validation.

About ten years ago the software performance validation dis-
cipline had a breakthrough due to the introduction of techniques
(based on model transformations) that allow the automated genera-
tion of performance models from software artifacts[1]. These new
techniques aim at integrating performance validation in the soft-
ware life cycle without changing the daily practices of software
developers. The introduction of automation in the software per-
formance engineering process in practice removes both the above
obstacles, since: (i) no special skill is required to build a perfor-
mance model because this task is tool-based, (ii) tool processing
time is much shorter than human design time.

Several methodologies have been introduced that share the idea
of annotating software models with data related to performance
and then translating the annotated model into a performance model
ready to be validated.

Very successful methodologies have been created that allow an-
notating software models (using different notations that span from
ADL’s to Process Algebras to UML) with performance data (such
as the operational profile), and allow to transparently translate the
annotated software models into performance models (e.g., a Queue-
ing Network or a Petri Net). A recent comprehensive survey on
methodologies and tools for model-to-model transformations in soft-
ware performance can be found in [4].

However, being the focus of this paper the integration of efficient
performance models that represent the running platform with se-
quence diagram models, here we provide a short view on the work
in this specific area and describe the novelty of our approach.

An interesting approach to the integration of software models
based on UML-RT with platform models for the goal of model sim-
ulation has been recently presented in [6]. A library of UML-RT
model prototypes is introduced to allow the enrichment of a soft-

ware model with a description of a running platform. Each specific
resource type is modeled by a Capsule and a Statechart describing
its behaviour.

The work presented in this paper is very close the one in [6],
because both aim at providing support to integrate software models
with platform models for sake of performance analysis. However,
the novel contribution of our work is two-fold:

1. We work here in standard UML notation whereas models
in [6] rely on the UML-RT profile for real-time application,
therefore our approach can be more widely used;

2. The node library that we developed here is introduced in a
context of distributed computing, where several tools have
been assembled to experience a thorough path from software
to performance indices (and non-trivial interoperability is-
sues had to be solved), whereas the experience in [6] is local-
ized within an unique tool, that is Rational Rose Real Time.

In the wider field of non-functional validation and Model-Driven
Engineering, some interesting contributions have been brought in
the last few years.

In [9], the authors aim at helping designers to reason on non-
functional properties at different levels of abstraction, as Model
Driven Analysis (MDA) does for functional aspects. They intro-
duce a development process where designers can define, use and
refine the measurements necessary to take into account Quality Of
Service (QoS) attributes.

In [11], MDA is viewed as a suitable framework to incorporate
various analysis techniques into the development process of distri-
buted systems. In particular, the work focuses on response time
prediction of Enterprise Java Beans (EJB) applications by defin-
ing a domain model and a mapping of the domain onto a queueing
network meta model.

3. METHODOLOGY
In this section we present a brief overview of the methodology

introduced in this paper. The major steps that are required to be ex-
ecuted by requirements engineers, architects and performance en-
gineers in our performance modeling approach are:

1. The first step is the construction, by the performance engi-
neer (PE), of a library of node types that represent the com-
plex node behavior in the simulation modeling layer. This
library would be optimized to produce efficient simulation
models,

2. The second step is performed by the requirements engineer
(RE), who first gathers the set of functional and non-functional
requirements (NFR’s). The RE then develops a set of use
cases for the functional requirements in a UML model to de-
scribe the message flow. The RE will also provide informa-
tion obtained from the requirements analysis regarding the
anticipated demands on the system (e.g.: number of users,
frequency of particular requests, etc.), resource constraints
(e.g.: maximum allowed resource utilization), and end-to-
end user metrics (e.g.: response time),

3. The third step is the construction of a deployment diagram
by the architect who partitions the system into a set of nodes
upon which the various components will execute. The archi-
tect also selects the appropriate node types from the prede-
fined simulation model library,

158

4. The fourth step is initiated by the Architect to generate the
performance model using the model to model transformation
approach,

5. The fifth step is initiated by the PE who runs the simulation
(or analytical solver if possible) and provides feedback to
the architect on the system deployment and node choices.
The architect and the PE then iterate over various deployment
node types or reorganize how the system is partitioned over
the nodes. This exercise is repeated, making various trade
offs, until the required system NFR’s and quality attributes
are met to an acceptable level.

The proposed approach takes advantage of the performance en-
gineer’s expertise in developing optimized models and of the re-
quirements engineer’s and architect’s knowledge about the appli-
cation specific behavior. Examples of application specific behavior
are: message flow between application components, resource de-
mands per message, and which performance metrics are of interest
to the customer. Many of the application domains in software engi-
neering are currently specifying requirements in UML through se-
quence diagrams, deployment diagrams, and other UML diagram
models. Therefore, our approach should be applicable to a variety
of domains.

4. ARCHITECTURE FRAMEWORK
We present in this section the selected architecture framework

to support the model transformation approach introduced in this
paper. The PMIF language introduced in [12] was selected as the a
standard language for representing QN-based performance models.
In the following, we refer to PMIF as the performance language.

The workflow for UML diagram model transformation to the
performance language, and its solution by the performance model-
ing solver is illustrated in Figure 1 and is composed of the following
steps:

1. The user draws the UML model using the UML modeler tool,

2. The model is converted from the original UML diagrams
to the performance language (PMIF) using the Performance
Model Generator tool,

3. The resulting model in the performance language is con-
verted to the native simulation tool language using the Tool-I
adapter,

4. The model is solved by the performance evaluation tool, the
Tool-I

Figure 1: Dataflow for UML to Performance Modeling Trans-
formation

Figure 2 represents the component and connector view of the
UML-PM architecture framework that shows its software compo-
nents and their deployment:

1. UML Editor is an UML modeling tool (Omondo, Magic-
draw, etc) where the requirements engineer draws the per-
formance model.

2. TDE (Test Development Environment) is the framework that
is responsible for managing all the communication with the
other components as well as managing the process execu-
tion flow. TDE is composed by four sub-components: the
TDE core, the Performance API, the Translator plug in and
the Solver plug in. The TDE core implements the user in-
terface of the TDE/PM tool and optionally has its own UML
modeling tool. The performance API is responsible for man-
aging the execution flow of the performance analysis, and
for keeping an up-to-date list of the available node types. In
addition, the performance API is also responsible for provid-
ing an interface for the user to specify all the performance
parameter values required for the UML to PMIF transforma-
tion and to completely specify the required parameter values
for the node type library simulation model. The translator
plug in deals with the communication between TDE and the
translator, while the solver plug in deals with communication
with the performance modeling solver.

3. The function of the Node Type Library (NTL) Server in Fig-
ure 2 is to maintain an up to date list of available node types
and of the parameters required by those node types. The node
type concept provides a mechanism for the architect to make
associations between platform nodes and node types in the
deployment diagram. Parameters required by the node type
library must be used by the architect to associate parameter
values with various elements in the UML model.

4. The translator component converts the XMI representation
of the UML model to the performance language. An exam-
ple of a translator is the Mosquito tool [2] that takes as input
UML sequence diagram model and generates a PMIF (Per-
formance Model Interchange Format) file.

5. The solver component translates the model from the perfor-
mance language to the tool’s native language and solves the
model, usually by simulation. An example of a performance
modeling solver is the Tangram-II solver [7].

To support the architecture designed for the UML-PM frame-
work, the original PMIF language was updated with the concept of
node types. An example of a declaration of a node type is shown
below:

<Node>
<Server Name="Server" Quantity="1">
<NodeType library="Web_Server">

<Param Name="Timeout" Value="1"/>
<Param Name="MaxConns" Value="5"/>

</NodeType>
</Server>

</Node>

In this example, a node named Server representing a web server
is added to the model. This node has the following parameters:

• Timeout, which specifies the maximum time a connection
can be idle before being dropped by the server,

159

TDE

TDE core

Performance API NTL
Cache

Translator Plug in Simulator Plug in

NTL Server

Solver

Adapter

Simulator Tool

Translator

EMF model reading

Xprit

UML Editor

Figure 2: Architecture view exposing the UML-PM compo-
nents nodes.

• MaxConns, which limits the maximum number of concurrent
connections this server can accept.

The architecture for the UML-PM framework allows the solver
component to return various metrics associated with deployments
nodes and user scenarios. For example, the following metrics are
commonly produced associated with user scenarios:

• Throughput

• End-to-end delay

The following metrics are commonly produced associated with
deployment nodes:

• Utilization

• Queue length

5. APPLICATION TO AN E-COMMERCE
SYSTEM

In this section we show an example of the application of the
methodology introduced in this paper to model a distributed e-
commerce system. We follow the steps presented in Section 3.

1. The first step in our methodology is the construction by the
performance engineer of a library of node types. We present
in the Subsection 5.4 the model of two node types that were
developed to represent the distributed e-commerce system.

2. The second step is the definition by the requirements engi-
neer of the goals of the analysis (Subsection 5.1) and the de-
velopment of a set of use cases to describe the message flow
(Subsection 5.2).

3. The third step is the construction of deployment diagrams by
architects and the selection of appropriate node types (Sub-
section 5.3).

4. The fourth step is the generation of the performance model
by architects using the model to model transformation ap-
proach (Subsection 5.4).

5. The fifth step is the evaluation of the results obtained from
the performance model by the performance engineer to an-
alyze if the requirements of the system are met (Subsec-
tion 5.4).

5.1 Goals of the Analysis
The goals of the analysis are to evaluate the customer affecting

metrics by solving the generated performance model. For the e-
commerce application system under study the following customer
affecting metrics were defined:

1. Average login response time should be 5 seconds or less,

2. The e-commerce application server should support a mean
arrival rate of 1 login operation per second with an average
response time less than 5 seconds.

These performance requirements were derived by the require-
ments engineering process described in the next subsection.

5.2 Modeling using UML diagram models
To model this system using the UML approach, the requirements

engineer would have to develop dynamic modeling diagrams, such
as sequence charts or activity diagrams. The requirements engineer
would initiate this activity by communicating with the customers to
gather the relevant requirements. For the login process, the require-
ments were:

1. Users must login to the system by providing their name and
password,

2. All login attempts shall be logged,

3. When a user successfully logs on, they will be given permis-
sions based on their group membership,

4. Login response shall be 5 seconds or less,

5. A login rate of at least 1 login operation per second shall be
supported,

6. A failed login will indicate the failure and repeat the request
for the user’s name and password,

7. A successful login will present a welcome screen.

After listing the requirements, the next step is to model the dy-
namics of use cases for the system, typically using charts, like the
UML sequence diagram. We now describe Figure 3, which shows
the UML sequence diagram model for the login process. The user
enters his credentials, name and password, in the UI. The UI for-
wards these credentials to the Session Manager which is respon-
sible for associating a connection to a user. The Session Man-
ager sends the user credentials to the Authenticator where they will
be validated for correctness. In addition to executing the valida-
tion procedure the Authenticator logs the result of the operation by
sending a message, Successful or failed login, to the Log Manager.
Next, the Authenticator sends a message, Credentials or failed lo-
gin, to the Session Manager. If the Session Manager receives a
message response Failed login, the Session Manager will forward
the response back to the UI, such that the UI can report the error
to the user and he/she can try to login again. If the validation suc-
ceeded, the Session Manager sends a message, Request permission

160

set to the Authorizer requesting the user’s privileges. Upon receiv-
ing the message response, Permission set, from the Authorizer, the
Session Manager can set the privileges for the current session and
sends the message response to UI, Display welcome screen.

Figure 3: Sequence diagram for the login case

5.3 Modeling using Node Type Libraries
In the next step, the architect would decide how to partition the

functions of the system into components and assign where each
component will execute. These decisions are documented on the
deployment diagram. For the login process, the deployment dia-
gram is shown in Figure 4.

Figure 4: Deployment diagram for e-commerce system

The architect chooses from the Node Type Table (NTT) the node
type that reflects the desired behavior for each one of the nodes in
his deployment diagram model. In the deployment diagram shown
in Figure 4, two of them, the Client Workstation and Application
Server, will be represented in the performance model because they
are important to evaluate the customer affecting metrics.

5.4 Generating the Performance Model
In the last subsection, two node types were selected by the archi-

tect to model the system: the Client Workstation and Application
Server. The Application Server node type represents a distributed
architecture for the e-commerce application. It includes one dis-
patcher and a number of e-commerce servers (See Figure 5). The
model of the node types were built based on the behavior of a real
e-commerce application and two well-known load balancing algo-
rithms for dispatching tasks to the e-commerce servers. We will
briefly present the e-commerce application and the load balancing
algorithms.

The e-commerce application considered is described in [3]. The
user operation of interest to the system model is login. The e-
commerce server works as follows. Whenever a new request ar-
rives in the e-commerce server, a new thread is created. The main
impact of this new thread in the system, is that a block of memory
from the heap is allocated to it. As long as the available memory
is above the threshold that triggers the garbage collector there is
no slowdown in the system. Since the memory is not immediately
freed when thread finishes its execution, the JVM needs to run the
garbage collector to deallocate the memory assigned to threads that
are no longer running.

We consider the following feature requirements as in the work
of [3]:

• simulate the dynamics of the garbage collection engine;

• the ability to configure the garbage collection memory heap
size;

• account for the number of threads;

• account for the kernel slowdown associated with the number
of threads executing in parallel;

• account for the memory requirements of each thread;

• have the ability to configure multiple Java Virtual Machines
(JVM).

The dispatcher implements two load balancing algorithms:

• Shortest of two queues: two servers are chosen uniformly at
random, their queues lengths are compared and the request is
sent to that with the shortest queue.

• Round-robin: requests are routed to each server in a periodi-
cally repeated order.

Figure 5 shows the resulting Tangram-II model including the two
node types the Client Workstation and Application Server. The
Application Server consists of a dispatcher and four e-commerce
servers. The Client Workstation node type represents the arrival of
requests at the dispatcher of the Application Server node type. Each
one of the e-commerce servers implements the garbage collection
and Java multi-threading behavior.

The declaration of the node types Application Server and Client
Workstation is as follows:

<Node>
<Server Name="Application_Server"

Quantity="1">
<NodeType library="Web_Server">

<Param Name="HeapSize" Value="2GB"/>
<Param Name="NumCPUs" Value="16"/>
<Param Name="CPUProcessingTime"

Value="5ms"/>

161

name=Client
Workstation

name=e-commerce server1
Watches=
Chosen
Queue
BusyCPUs
ServiceRate

name=Memory1
Watches=
Heap
Running

name=Dispatcher

Watches=

name=e-commerce server2
Watches=
Chosen
Queue
BusyCPUs
ServiceRate

name=Memory2
Watches=
Heap
Running

name=e-commerce server3
Watches=
Chosen
Queue
BusyCPUs
ServiceRate

name=Memory3
Watches=
Heap
Running

name=e-commerce server4
Watches=
Chosen
Queue
BusyCPUs
ServiceRate

name=Memory4
Watches=
Heap
Running

name=Application Server

Figure 5: Model of the e-commerce system with load balancing.

<Param Name="CPUQueueSize" Value=100/>
<Param Name="ThreadThreshold"

Value="50"/>
<Param Name="OverheadThreshold"

Value="1.2"/>
<Param Name="GCThreshold"

Value="100MB"/>
<Param Name="GCTime" Value="60ms"/>
<Param Name="NumVMs" Value="2"/>
<Param Name="BlockSize" Value="10MB"/>
<Param Name="LoadBalanceAlg"

Value="SQ"/>
<Param Name="NumberofServers"

Value="4"/>
</NodeType>

</Server>
</Node>

<Node>
<Client Name="Client_Workstation"

Quantity="1">
<NodeType library="Client_Behavior">

<Param Name="RequestArrivalRate"
Value="1"/>

</NodeType>
</Client>

</Node>

We simulate the model of Figure 5 considering the two load bal-
ancing algorithms and the following scenario: (i) the arrival of re-
quests is Poisson with rate varying from 1.0 to 1.5; (ii) the ser-
vice rate at a server is load dependent: if the number of customers
queued and in service is above one half of the total available queu-
ing space (50) the service rate, which is equal to 0.2, is reduced by
a factor of 1.2; (iii) the heap size is equal to 1000 and the threshold
for the remaining heap size which activates the full garbage collec-
tion event is equal to 100; (iv) there are 4 e-commerce servers, each
one with 16 CPUs.

The main goal of the simulation is to illustrate the performance
measures that can be computed using the Tangram-II tool [7]. These
help the requirements and performance engineer to build and pa-
rameterize the system under development.

The performance engineer seeks to satisfy the performance re-
quirement specification. Towards this goal, the expected queue

length will be obtained as a function of the request rate. (Clearly,
using Little’s result and the server throughput, the mean user re-
sponse time is easily obtained.) In this example, in order to illus-
trate the flexibility of the tool, we assume that the performance en-
gineer is also interested in evaluating the load balancing algorithms
and their impact on the mean response time. Therefore, we obtain
the fraction of time the difference between any pair of queues is
above a given level, to evaluate the effectiveness of the algorithms
in balancing the load. In addition, the the server utilization (the
fraction of time all server’s CPUs are processing requests) is also
calculated. All the results are computed for request rates between
[1.0, 1.5] and with a confidence level equal to 95%.

Figure 6 shows the fraction of time the difference between any
pair of queues of the servers is above 5 for both algorithms. From
the figure we note that the shortest of two queues algorithm pro-
vides a better load balancing among the servers: only 5% of the
time the difference between any pair of queues is greater than 5,
except for the arrival rate equal to 1.4. On the other hand, for the
round robin algorithm, this fraction varies between 35% and 80%.

Figures 7 and 8 show the results for others values of the queue
difference level. For instance, in only 0.1% of the time the queue
difference is above 10 when the shortest of two queues algorithm
is used and the difference is never greater than 20. However, for
the round robin algorithm, in more than half of the time the queue
difference is above 20 (for the arrival rate equal to 1.3).

One may also notice that the fraction of time the difference in the
server queues lengths increases with the job arrival rate till a maxi-
mum and then decreases. When the arrival rate is very low queues
are almost non-existing and so the difference among the server
queues are small. In addition, when the servers are completely
overloaded, the finite queue lengths achieve their maximum val-
ues and so the difference in the queue lengths between any server
is also small. We should expect the main difference occurs at the
point when the servers start to overload.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
Request arrival rate

Fr
ac

tio
n

of
 ti

m
e

qu
eu

e
di

ffe
re

nc
e

is
ab

ov
e

a
gi

ve
n

le
ve

l

queue difference > 5 - round robin

queue difference > 5 - shostest of two queues

Figure 6: Fraction of time queue difference is above 5 - both
algorithms.

Figures 9 and 10 show the saturation point considering each load
balancing algorithm: it occurs when the arrival is equal to 1.3 for
the round robin and equal to 1.4 for the shortest of two queues al-
gorithm. We estimate the mean waiting time just before the system
saturates. It is equal to 8.4 when round robin is used and 2.8 for the
shortest of two queues scheduling. Therefore, the shortest of two
queues algorithm implies an average waiting time one third of that
when the round robin is used.

162

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
Request arrival rate

Fr
ac

tio
n

of
 ti

m
e

qu
eu

e
di

ffe
re

nc
e

is
ab

ov
e

a
gi

ve
n

le
ve

l queue difference > 3
queue difference > 5
queue difference > 10
queue difference > 15
queue difference > 20

Figure 7: Fraction of time queue difference is above a given
level for the round robin algorithm.

 1e-06

 1e-05

 1e-04

 0.001

 0.01

 0.1

 1

 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

queue difference > 3
queue difference > 5
queue difference > 10
queue difference > 15

Request arrival rate

Fr
ac

tio
n

of
 ti

m
e

qu
eu

e
di

ffe
re

nc
e

is
ab

ov
e

a
gi

ve
n

le
ve

l

Figure 8: Fraction of time queue difference is above a given
level for the shortest of two queues algorithm.

Figure 11 illustrates the fraction of time all of the 16 CPUs are
processing requests simultaneously. From the figure we can also
observe the saturation point for each algorithm.

In Section 5.1, two customer affecting metrics were defined: the
average login response time and mean arrival rate supported by
the system. Based on the results obtained from the model the per-
formance engineer can conclude that:

• The round robin algorithm can satisfy the specified require-
ments: the average login response time is less than 5s if the
mean arrival rate is less than or equal to 1.1.

• The shortest of two queues algorithm besides meeting the
requirements, performs better than the round robin: the aver-
age login response time is less than 2.8s if the mean arrival
rate is less than or equal to 1.3.

This simple example illustrates how the methodology we pro-
pose can be used to help requirements and performance engineers
answer important design questions and easily obtain useful perfor-
mance metrics.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

server 1
server 2
server 3
server 4

Request arrival rate

M
ea

n
qu

eu
e

siz
e

Figure 9: Mean queue size for the round robin algorithm.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6

server 1
server 2
server 3
server 4

Request arrival rate

M
ea

n
qu

eu
e

siz
e

Figure 10: Mean queue size for the shortest of two queues algo-
rithm.

6. CONCLUSIONS
In this paper we have reported on our experience applying a

new model transformation methodology, which is applicable to the
study of large practical industrial systems. Our methodology at-
tempts to combine the expertise of requirements engineers, archi-
tects, and performance engineers to produce an efficient workflow
for performance modeling.

As envisioned, requirements engineers would take advantage of
an existing library of efficient simulation models that were imple-
mented by expert performance engineers ahead of time, and there-
fore could focus on their own domain of expertise. As a conse-
quence, the simulation models produced by our approach are ex-
pected to be scalable because they are built from efficient modules.

One of the benefits of our methodology is that organizations can
build a repository of simulation node types that could be reused by
the community of architects to create efficient simulation models.

We are continuing and extending our UML-PM architecture fra-
mework in the usability domain. As topics for further research we
are considering architectures to enable efficient tool usage by re-
quirements engineers and architects, and the graphical visualization
of customer affecting metrics in the UML modeling domain.

163

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6
Request arrival rate

Fr
ac

tio
n

of
 ti

m
e

al
l C

PU
’s

ar
e

pr
oc

es
sin

g
re

qu
es

ts

round robin

shortest of two queues

Figure 11: Fraction of time all CPUs are utilized - both algo-
rithms.

7. REFERENCES
[1] International workshops in software and performance, wosp

1998-2008, http://www.wosp-conference.org/.
[2] The mosquito tool,

http://sealabtools.di.univaq.it/sealab/tools.html.
[3] A. Avritzer and E. J. Weyuker. The role of modeling in the

performance testing of e-cormmerce applications. IEEE
Trans. Software Eng., 30(12):1072–1083, 2004.

[4] S. Balsamo, A. D. Marco, P. Inverardi, and M. Simeoni.
Model-based performance prediction in software
development: A survey. IEEE Transactions on Software
Engineering, 30(5):295–310, 2004.

[5] F. Baskett, K. M. Chandy, R. R. Muntz, and F. Palacios.
Open, closed and mixed networks of queues with different
classes of customers. Journal of the ACM, 22(2):248–260,
April 1975.

[6] V. Cortellessa, P. Pierini, and D. Rossi. Integrating software
models and platform models for performance analysis. IEEE
Transactions on Software Engineering, 33(6):385–401, 2007.

[7] E. de Souza e Silva, A. da Silva, A. de A. Rocha, R. Leão,
F. Duarte, F. Filho, G. Jaime, and R. Muntz. Modeling,
analysis, measurement and experimentation with the
Tangram-II integrated environment. In Proc. of Int. Conf. on
Performance Evaluation Methodolgies and Tools
(ValueTools’06), 2006.

[8] E. de Souza e Silva and R. Muntz. Stochastic Analysis of
Computer and Communication Systems, chapter Queueing
Networks: Solutions and Applications, pages 319–399.
North-Holland, 1990.

[9] S. Rottger and S. Zschaler. Model-driven development for
non-functional properties: refinement through model
transformation. Proc. of UML 2004, LNCS 3273, pages
275–289, 2004.

[10] R. Sangwan, Bass, N. M., Mullick, D. Paulish, and
J. Kazmeier. Global Software Development Handbook.
Auerbach Publications, Boca Raton, FL, 2007.

[11] J. Skene and W. Emmerick. Model-driven performance
analysis of Enterprise Information Systems, ENTCS 82(6),
2003.

[12] C. U. Smith and C. M. Llado. Performance model
interchange format (pmif 2.0): Xml definition and
implementation. In QEST ’04: Proceedings of the The
Quantitative Evaluation of Systems, First International
Conference on (QEST’04), pages 38–47, Washington, DC,
USA, 2004. IEEE Computer Society.

164

